
 1

Measuring Software Functional Size:

Towards an Effective Measurement of Complexity

De Tran-Cao1 Ghislain Levesque2 Alain Abran3
tran@nii.ac.jp levesque.ghislain@uqam.ca abran.alain@uqam.ca

Software Engineering Management Research Laboratory

University of Quebec in Montreal (UQAM)

1 PhD student, Cognitive and Computer Sciences, Université du Québec à Montréal
2 Professor of Software Engineering, Université du Québec à Montréal
3 Professor of Software Engineering, École de Technologie Supérieure, Montréal

Abstract

Data manipulation, or algorithmic complexity, is not
taken into account adequately in any of the most popular
functional size measurement methods. In this paper, we
recall some well-known methods for measuring problem
complexity in data manipulation and highlight the interest
in arriving at a new definition of complexity. Up to now,
the concept of effort has always been associated with
complexity. This definition has the advantage of
dissociating effort and complexity, referring instead to
the characteristics and intrinsic properties of the software
itself. Our objective is to propose some simple and
practical approaches to the measurement of some of these
characteristics which we consider particularly relevant
and to incorporate them into a functional size
measurement method.

1. Introduction

Software size in function points is a measure of the
size of the product and can be used to evaluate and predict
some aspects of the production process, like the effort, the
cost and the productivity of software development. There
are two main approaches to measuring software size: the a
posterior approach, such as LOC [9], and the a priori
approach, such as the methods based on software
functionality [1, 2, 3, 4, 18, 22, 24, 25]. LOC is the
simplest and the earliest method used to measure software
size. While it is very useful, it has been great ly criticized
[4, 11] for the way in which it defines a line of code and
how it deals with different types of programming
language. The a priori methods are gaining more and more
attention in the software measurement community because
they are independent of programming languages and they
allow early estimation of the size of the end-product.

When calibrated to the software environment, this
provides a significant index for evaluating the
development effort and assessing the cost of a software
product [17]. In fact, Albrecht’s Function Point Analysis
(FPA) is widely used to measure the software size of
management information systems (MIS). However, FPA
is criticized for not taking into account complexity in an
objective way [24]. Therefore, FPA is not likely to be
applicable to all types of software [2].

Some attempts have been made to adapt FPA to
software types which are complex in terms of data
manipulation, such as real-time software, in order to
objectively estimate software complexity [1, 2, 18, 27, 24,
25]. The Mark-II Function Point Method [24] is one of the
approaches for doing this, however it requires historical
data, which may make it difficult to apply to an
application without such data. There are other FPA
extensions which deal with the special characteristics of
software, expressing the algorithmic difficulties or the
complexity of the process of transforming (or
manipulating) data from inputs to produce expected
output data. Some well-known methods of this type are
mentioned here. Feature Points [18] weights the
algorithmic complexity based on its calculation steps and
the data elements that need to be manipulated. However,
no guidance is provided for identifying an algorithm at an
adequate level of abstraction [2]. Another approach to
taking into account the complexity of data manipulation is
3D Function Points [25]. This method measures software
size in three dimensions: data, function and control
(dynamic behaviors). The data dimension is measured by
the number of inputs, outputs, inquiries, internal data
structures and external logical files, in a similar way to the
measurement of unadjusted function points of FPA. The
function dimension is measured by the number of
transformations, which is the sum of the number of
processing steps and the number of semantic statements.

