
 1

Software Functional Complexity Analysis and Effort Prediction
De Tran-Cao1, Ghislain Lévesque2

1College of information technology, University of Cantho, Vietnam
2Computer Science Department, University of Quebec at Montreal, Canada.

Abstract
This paper introduces a new method for analyzing and quantifying software complexity. The
method is specification-based as Function Point Analysis (FPA) and its derivatives. The term
“software functional complexity” refers to the cognitive difficulty derived from software
functionalities. It is taken as the complexity of the task that must be fulfilled by software. The
method captures complexity in input, output data, in data manipulation and in relationships
between software components. These measures will be used to build a prediction model of effort
needed for development or maintenance software. The prediction model is empirically
established with a group of 15 software maintenance projects. The multiple regression analysis
between the real effort and these measures supports the conclusion that these complexity
measures can be used to predict development/maintenance effort with a fairly good precision. A
cross test of the type leave-one-out between these 15 projects confirms also the goodness of our
measures in estimating effort.
Keywords: software size, software complexity, complexity measurement, effort estimation,
functional complexity measurement, task complexity.

1 Introduction
Software size is a key measure for many cost and effort estimation models. Traditionally, the
number of lines of code (LOC) was often used as an intuitive measure of size. Studies [11,17]
confirm that LOC is an effective measure for maintenance effort prediction. Effort estimation
models such as SLIM [19] and COCOMO [6] are based on LOC. However, LOC cannot be
measured early in the software development process. Furthermore, evidence suggests that LOC
can be very inaccurate because they depend on language and development tools [8].
The functional approach for software sizing and for estimating development effort was proposed
by Allan Albrecht in 1979 [4]. This method measures software size in terms of function points
that is the amount of functionalities of software delivered to users. The Function Point Analysis
(FPA) of Albrecht is well known because of its great advantages: independent of programming
language and technology, easy to understand for client and user and applicable at early phases of
the software life cycle.
The FPA’s process for quantifying software size begins with identifying the elements (-type) of
software from the software specifications. Then, these elements are weighted according to their
complexity. Therefore, software sizing cannot be independent of software complexity
measurement. Unfortunately, software complexity has not been precisely addressed in the
method. The evaluation of complexity is basically subjective. It makes it difficult to be applied
coherently and repeatedly. In addition, historically, FPA was developed in and designed for
Management Information System (MIS). It is not appropriate to size software of other types,
including real-time, scientific and embedded software. There have been many other proposals
[2,14,20,22,29] that try to overcome these weaknesses. These works focus on how to reduce the

