
Chapter 1 — Computer Abstractions and Technology — 26

Defining Performance
n Which airplane has the best performance?

§1.6 Perform
ance



Chapter 1 — Computer Abstractions and Technology — 27

Response Time and Throughput
n Response time

n How long it takes to do a task
n Throughput

n Total work done per unit time
n e.g., tasks/transactions/… per hour

n How are response time and throughput affected 
by
n Replacing the processor with a faster version?
n Adding more processors?

n We’ll focus on response time for now…



Chapter 1 — Computer Abstractions and Technology — 28

Relative Performance
n Define Performance = 1/Execution Time
n “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program
n 10s on A, 15s on B
n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n So A is 1.5 times faster than B



Chapter 1 — Computer Abstractions and Technology — 29

Measuring Execution Time
n Elapsed time

n Total response time, including all aspects
n Processing, I/O, OS overhead, idle time

n Determines system performance
n CPU time

n Time spent processing a given job
n Discounts I/O time, other jobs’ shares

n Comprises user CPU time and system CPU 
time

n Different programs are affected differently by 
CPU and system performance



Chapter 1 — Computer Abstractions and Technology — 30

CPU Clocking
n Operation of digital hardware governed by a 

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period: duration of a clock cycle
n e.g., 250ps = 0.25ns = 250×10–12s

n Clock frequency (rate): cycles per second
n e.g., 4.0GHz = 4000MHz = 4.0×109Hz



Chapter 1 — Computer Abstractions and Technology — 31

CPU Time

n Performance improved by
n Reducing number of clock cycles
n Increasing clock rate
n Hardware designer must often trade off clock 

rate against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

´=



Chapter 1 — Computer Abstractions and Technology — 32

CPU Time Example
n Computer A: 2GHz clock, 10s CPU time
n Designing Computer B

n Aim for 6s CPU time
n Can do faster clock, but causes 1.2 × clock cycles

n How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
´

=
´´

=

´=´=

´=

´
==



Chapter 1 — Computer Abstractions and Technology — 33

Instruction Count and CPI

n Instruction Count for a program
n Determined by program, ISA and compiler

n Average cycles per instruction
n Determined by CPU hardware
n If different instructions have different CPI

n Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=



Chapter 1 — Computer Abstractions and Technology — 34

CPI Example
n Computer A: Cycle Time = 250ps, CPI = 2.0
n Computer B: Cycle Time = 500ps, CPI = 1.2
n Same ISA
n Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this much



Chapter 1 — Computer Abstractions and Technology — 35

CPI in More Detail
n If different instruction classes take different 

numbers of cycles

å
=

´=
n

1i
ii )Count nInstructio(CPICycles Clock

n Weighted average CPI

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency



Chapter 1 — Computer Abstractions and Technology — 36

CPI Example
n Alternative compiled code sequences using 

instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5



Chapter 1 — Computer Abstractions and Technology — 37

Performance Summary

n Performance depends on
n Algorithm: affects IC, possibly CPI
n Programming language: affects IC, CPI
n Compiler: affects IC, CPI
n Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=



Chapter 1 — Computer Abstractions and Technology — 38

Power Trends

n In CMOS IC technology

§1.7 The Pow
er W

all

FrequencyVoltageload CapacitivePower 2 ´´=

×1000×30 5V → 1V



Chapter 1 — Computer Abstractions and Technology — 39

Reducing Power
n Suppose a new CPU has

n 85% of capacitive load of old CPU
n 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
´´

´´´´´
=

n The power wall
n We can’t reduce voltage further
n We can’t remove more heat

n How else can we improve performance?



Chapter 1 — Computer Abstractions and Technology — 40

Uniprocessor Performance
§1.8 The Sea C

hange: The Sw
itch to M

ultiprocessors

Constrained by power, instruction-level parallelism, 
memory latency



Chapter 1 — Computer Abstractions and Technology — 41

Multiprocessors
n Multicore microprocessors

n More than one processor per chip
n Requires explicitly parallel programming

n Compare with instruction level parallelism
n Hardware executes multiple instructions at once
n Hidden from the programmer

n Hard to do
n Programming for performance
n Load balancing
n Optimizing communication and synchronization



Chapter 1 — Computer Abstractions and Technology — 42

SPEC CPU Benchmark
n Programs used to measure performance

n Supposedly typical of actual workload
n Standard Performance Evaluation Corp (SPEC)

n Develops benchmarks for CPU, I/O, Web, …

n SPEC CPU2006
n Elapsed time to execute a selection of programs

n Negligible I/O, so focuses on CPU performance
n Normalize relative to reference machine
n Summarize as geometric mean of performance ratios

n CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time ExecutionÕ

=



Chapter 1 — Computer Abstractions and Technology — 43

SPECspeed 2017 Integer benchmarks on a
1.8 GHz Intel Xeon E5-2650L



Chapter 1 — Computer Abstractions and Technology — 44

SPEC Power Benchmark
n Power consumption of server at different 

workload levels
n Performance: ssj_ops/sec
n Power: Watts (Joules/sec)

÷
ø

ö
ç
è

æ
÷
ø

ö
ç
è

æ
= åå

==

10

0i
i

10

0i
i powerssj_ops Wattper ssj_ops Overall



Chapter 1 — Computer Abstractions and Technology — 45

SPECpower_ssj2008 for Xeon E5-2650L



Chapter 1 — Computer Abstractions and Technology — 46

Pitfall: Amdahl’s Law
n Improving an aspect of a computer and 

expecting a proportional improvement in 
overall performance

§1.11 Fallacies and Pitfalls

208020 +=
n

n Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n Example: multiply accounts for 80s/100s
n How much improvement in multiply performance to 

get 5× overall?

n Corollary: make the common case fast



Chapter 1 — Computer Abstractions and Technology — 47

Fallacy: Low Power at Idle
n Look back at i7 power benchmark

n At 100% load: 258W
n At 50% load: 170W (66%)
n At 10% load: 121W (47%)

n Google data center
n Mostly operates at 10% – 50% load
n At 100% load less than 1% of the time

n Consider designing processors to make 
power proportional to load



Chapter 1 — Computer Abstractions and Technology — 48

Pitfall: MIPS as a Performance Metric
n MIPS: Millions of Instructions Per Second

n Doesn’t account for
n Differences in ISAs between computers
n Differences in complexity between instructions

6
6

6

10CPI
rate Clock

10
rate Clock

CPIcount nInstructio
count nInstructio
10time Execution

count nInstructioMIPS

´
=

´
´

=

´
=

n CPI varies between programs on a given CPU



Chapter 1 — Computer Abstractions and Technology — 49

Concluding Remarks
n Cost/performance is improving

n Due to underlying technology development
n Hierarchical layers of abstraction

n In both hardware and software
n Instruction set architecture

n The hardware/software interface
n Execution time: the best performance 

measure
n Power is a limiting factor

n Use parallelism to improve performance

§1.12 C
oncluding R

em
arks


