Thanh-Nghi Do Can Tho University *dtnghi@cit.ctu.edu.vn*

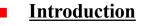
> Can Tho Dec. 2019

Content

Introduction

k Nearest Neighbors

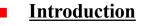
Content


Introduction

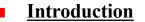
k Nearest Neighbors

X1	X2	Class
0	0	+1
0	1	+1
0	2	+1
1	1	+1
2	0	-1
2	1	-1
3	1	-1

X1	X2	Class
0	2	?


X1	X2	Class
0	0	+1
0	1	+1
0	2	+1
1	1	+1
2	0	-1
2	1	-1
3	1	-1

X1	X2	Class	
0	2	?	└───────── class = +1


X1	X2	Class
0	0	+1
0	1	+1
0	2	+1
1	1	+1
2	0	-1
2	1	-1
3	1	-1

X1	X2	Class
2	1	?

X1	X2	Class
0	0	+1
0	1	+1
0	2	+1
1	1	+1
2	0	-1
2	1	-1
3	1	-1

X1	X2	Class	
2	1	?	class = -1

X1	X2	Class
0	0	+1
0	1	+1
0	2	+1
1	1	+1
2	0	-1
2	1	-1
3	1	-1

X1	X2	Class
1.1	1	?

	X1	X2	Class
	0	0	+1
	0	1	+1
r	0	2	+1
	1	1	+1
	2	0	-1
	2	1	-1
	3	1	-1

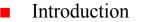
X1	X2	Class	
1.1	1	?	└────────── class = +1

Top 10 Data Mining Algorithms (Kdnuggets)

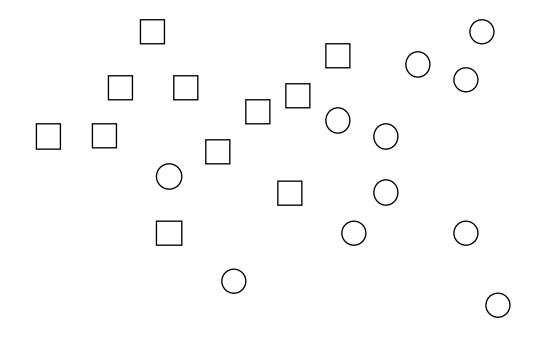
Here are the algorithms:

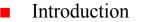
- 1. C4.5
- 2. k-means
- 3. Support vector machines
- 4. Apriori
- 5. EM
- 6. PageRank
- 7. AdaBoost
- 8. kNN
- 9. Naive Bayes
- 10. CART

k Nearest Neighbors (kNN)

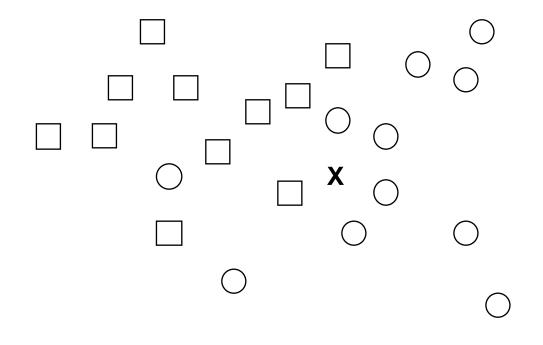

• k Nearest Neighbors (kNN)

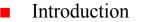
- Learning by analogy
- Simple and intuitive
- Called lazy learning (no training step)
- Training examples themselves represent the knowledge
- New example x is classified into the label which is most frequent among the k training examples nearest to that point x
- Dependent on the distance measure
- Can be extended for regression and clustering

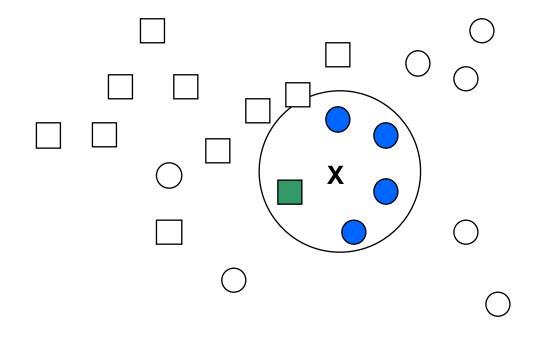

Content

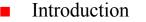

Introduction

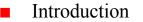
k Nearest Neighbors




k Nearest Neighbors (kNN)

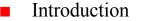



k Nearest Neighbors (kNN)


k Nearest Neighbors (kNN)

Distance measures

- Distance measure between x, y: d(x, y)
- Verifying 4 axioms for all x, y, z
 - 1. Non negativity: $d(x, y) \ge 0$
 - 2. Zero property: d(x, x) = 0
 - 3. Symmetry: d(x, y) = d(y, x)
 - 4. Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$


Distance measures

Minkowski distance

$$d(u,v) = \sqrt[q]{(|u_1 - v_1|^q + |u_2 - v_2|^q + ... + |u_n - v_n|^q)}$$

two points u, v in n-dimensional input space,

$$u = (u_1, u_2, ..., u_n)$$
 and $v = (v_1, v_2, ..., v_n)$
 $q \ge 1$

Distance measures

Minkowski distance

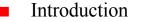
• with $q = 1 \Rightarrow d$ is Manhattan distance

$$d(u,v) = |u_1 - v_1| + |u_2 - v_2| + \dots + |u_n - v_n|$$

• with $q = 2 \Longrightarrow d$ is Euclidean distance

$$d(u,v) = \sqrt{(|u_1 - v_1|^2 + |u_2 - v_2|^2 + \dots + |u_n - v_n|^2)}$$

Introduction


k Nearest Neighbors

Exampl	le

 X1
 X2
 Class

 0.45
 5
 ?

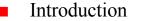
X1	X2	Class	d(Manhattan)	
0.1	10	+1	5.35	
0.2	25	+1	20.25	
0.3	0	+1	5.15	1NN Class = +1
0.5	11	-1	6.05	
0.8	100	-1	95.35	
0	50	+1	45.45	
1	70	-1	65.55	

Comments

- Feature X2 in [0..100]
- Feature *X1* in *[0..1]*
- Distance measure depends on *X*2
- Necessary to normalize data
- Scaling *X2* to have values between *0* and *1*

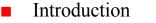
 $new_val = (val - min)/(max - min)$

Introduction


<u>k Nearest Neighbors</u>

Normalized X2

 X1
 X2
 Class


 0.45
 0.05
 ?

X1	X2	Class	D(Manhattan)	
0.1	0.1	+1	0.4	
0.2	0.25	+1	0.45	
0.3	0	+1	0.2	
0.5	0.11	-1	0.11	1NN class = -1
0.8	1	-1	1.3	
0	0.5	+1	0.9	
1	0.7	-1	1.2	

Discussion

- Simple and intuitive: *k* nearest neighbors
- Tuning *k*
- Choosing the distance measure
- No training step
- Training examples themselves represent the knowledge
- Very slow for the prediction: simple version scans entire training example to derive a prediction
- Statisticians have used kNN since early 1950s
 - If $n \to \infty$ and $k/n \to 0$, error approaches minimum

Discussion

Theorem: For sufficiently large training set size n, the error rate of the INN classifier is less than twice the Bayes error rate. (Cover & Hart, 1967)

