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1.1 Deep Learning Hardware: Past, Present, and Future
Yann LeCun, Facebook Al Research and New York University

Abstract

Historically, progress in neural networks and deep learning research
has been greatly influenced by the available hardware and software
tools. This paper identifies trends in deep learning research that will
influence hardware architectures and software platforms of the future.

1 The Past

Modern Al is powered by deep learning (DL), whose origins go back to
early experiments with electronic neural nets in the 1950s. DL is based
on four simple ideas: (1) complex functions can be efficiently
constructed by assembling simple parameterized functional blocks
(such as linear operators and point-wise non-linearities) into multi-layer
computational graphs; (2) The desired function can be learned from
examples by adjusting the parameters; (3) the learning procedure
minimizes an objective function through a gradient-based method; (4)
the gradient can be computed efficiently and automatically through the
back-propagation algorithm (backprop, for short), which is nothing
more than a practical application of chain rule to compute the partial
derivatives of the objective with respect to all the parameters in the
system by propagating signals backwards through the network. The key
advantage of DL is that it alleviates the need to hand-design a feature ex-
tractor, as would be required with traditional machine learning and pattern-
recognition methods. When trained for a particular task, DL systems auto-
matically learn multi-layer hierarchical representations of the data that are
suitable for the task. One may wonder why such a simple idea as backprop
was not popularized until the late 1980s, and why such a natural idea as
DL did not become widely used until the early 2010s, fueling the recent
wave of interest in Al.

1.1 The Unreasonable Influence of Hardware and Software Tools on
Progress

Several lessons can be drawn from the 60+ year history of neural
networks:

(1) new ideas seem limited by the available hardware (and software); (2)
specialized hardware does not enable new methods; (3) biological
inspiration is fruitful but can be a trap. From the 1950s to the 1980s,
neural-network models used binary neurons: the MacCullloch-Pitts neuron
which computes a weighted sum of its inputs and passes it through a sign
function. This was largely because multiplications were prohibitively
expensive at the time, whether implemented in analog electronics, in digital
circuits, or in software. With binary inputs, additions are sufficient to
compute the neurons’weighted sums. One reason backprop did not emerge
until the late 1980s is that it required the use of neurons with continuous
non-linearities (such as sigmoids), which did not become practical until
workstation performance approached one million floating-point multiply-
accumulate operations per second.

More puzzling, while the basic techniques of DL have been around since
the late 1980s, what caused it to lose popularity within the research
community in the mid-1990s? (1) the performance of computers at the
time; (2) the small number of applications for which collecting large
labeled datasets was cost effective; (3) the effort involved in developing
flexible neural net simulators; (4) the reluctance of many research
institutions at the time to distribute open source software. What sparked
its sudden resurgence around 2013? There are four main factors: (1)
improved methods; (2) larger datasets with many samples and many
categories; (3) Low-cost TFLOPS-class general-purpose GPUs
(GPGPUSs); (4) open-source libraries with interpreted language front-
ends (Torch, Theano, cuda-convNet, Caffe). The first three of these
enabled record-breaking results in image recognition and speech recognition,
while the last one allowed these results to be easily replicated because they
incorporated all the engineering “tricks” necessary to get DL models to work.
Arguably, prior to this, computer vision and ML research was limited to what
was implementable easily in Matlab.

Interestingly, there were attempts to build dedicated hardware
architectures for neural networks before the advent of GPGPUs. But

none of them were successful, in part because they lacked flexibility
[1, 2] and/or were designed for particular types of neural networks that
had no proven practical use [3, 4, and references therein]. What has
accounted for the success of GPGPU for DL is their wide availability,
generality, programmability, and well-supported software stacks.

The important lesson is that Hardware capabilities and software tools both
motivate and limit the type of ideas that Al researchers will imagine and will
allow themselves to pursue. The tools at our disposal fashion our thoughts
more than we care to admit.

In other words, what the Al hardware and software communities will
produce over the next few years will shape Al research for the coming
decades.

1.2 Neural-Network Hardware of Yesteryear

The history of neural networks is inextricably linked with hardware. The
original 1957 Perceptron was a dedicated analog computer whose weights
were implemented with motorized potentiometers [5], and the rival model,
Adaline, was implemented with electrochemical “memistors” [6]. Early
adaptive equalizers based on the Adaline algorithms used relays to
represent weights [7]. Interest in neural networks had waned following the
publication of Minsky and Papert’s book“Perceptrons”in 1969 [8], and for
two decades, hardware development for “trainable” systems was confined
to adaptive-filter applications.

Then, in the mid 1980s, A second wave of interest in neural networks
took off, following work on Hopfield networks, Boltzmann Machines,
and the popularization of backprop [9, 10, 11]. In 1985, the Adaptive
Systems Research Department was created at Bell Laboratories in
Holmdel, NJ, under the leadership of Lawrence D. Jackel. This group,
which | joined in 1988, spent a decade developing a series of neural-
network chips. The evolution of their technology gives us an idea of the
constraints brought about by hardware considerations. For example, an
analog vector-matrix multiplication can simply be implemented as a
resistor array, with separate rows for positive and negative coefficients.
In 1986, the group build a 6x6 micron, 12x12 resistor array using e-
beam lithography (see Figure 1.1.1). But it quickly became clear that
non-programmability was a major limitation and that line amplifiers, 1/0
circuitry, and signal conversion would defeat the purpose of
manufacturing very small resistors [1]. Next, the group built a 54-
neuron mixed analog-digital chip. Each neuron had 54 ternary weights
(-1, 0, +1) with analog summing. The chip could perform simple feature
extraction on binary images, but its speed was limited by 1/0 bandwidth

[2].

When | joined in late 1988, | developed the first convolutional neural
net (ConvNet or CNN for short) and obtained excellent results on
handwritten character recognition tasks (zip codes) [12, 13]. The
ConvNet architecture was loosely inspired by that of the ventral pathway
in the visual cortex and was designed to process data that comes to us
in the form of an array (possibly, multidimensional) in which nearby
values are correlated: image, video, audio, text, and so on. ConvNets
are composed of two main types of stages: convolution stages and
pooling stages (see Figure 1.1.2). In a ConvNet designed for image
recognition, the input, output, and intermediate layer activations are all
3-dimensional arrays (often called tensors). Each “slice” of the input
tensor is a color channel. Each slice of the first layer output (called a
feature map) is obtained by performing a discrete convolution of each
of the input slices with different convolution kernel (also called filters).
The results are added and passed through a half-wave rectification non-
linearity (also called a ReLU for Rectified Linear Unit). The coefficient
of the convolution kernels, whose size if typically 5x5 or 3x3 are subject
to learning. A convolutional filter followed by a ReLU detects a particular
motif regard less of its location on the input and produces outputs that are
equivariant to shifts (that is when the input shifts, the output shifts
accordingly). The subsequent pooling layer reduces the spatial resolution
of the feature maps by aggregating values within a neighborhood using a
max or L, norm operation. Pooling windows are stepped by more than one
pixel, resulting in a lower-resolution feature map. Pooling makes the
representation robust to small shifts in the location of distinctive features.
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Multiple alternated stages of convolutions and pooling with increasing
numbers of feature maps and decreasing spatial resolutions are stacked,
producing outputs that are influenced by a large part of the input image.
ConvNet are often trained in a supervised manner using a form of stochastic
gradient descent (SGD). An image is shown to the network and the output
is computed. The output is compared to the desired output (representing
a label for the image) using a loss function. The gradient of this loss with
respect to all the filter coefficients in the network is computed through the
back-propagation procedure which propagates gradient signals backwards
through a version of the network in which all arrows have been reversed
and in which each operator multiplies these signals by its Jacobian matrix.
The essential characteristic of ConvNets is their ability to learn hierarchical
representations of the signal automatically.

Because of the prevalence of convolutions in image analysis, the next
generation of Bell Labs chips, called Net32k, contained 256 neurons,
each with 128 ternary weights, capable of 320x10° synaptic operations
per second [14]. Multiple rows could be combined with power-of-two
weights to form 64 neurons with 128 4-bit weights. An important new
feature was the presence of shift registers to allow fast convolution with
multiple filters, while minimizing access to external memory. Almost
simultaneously, another chip called ANNA (Analog Neural-Network
Accelerator) was built specifically to run convolutional networks [15].
It contained 64 neurons with 64 weights each. The weights were stored
on capacitors and refreshed from an external RAM through a DAC with
6-bit accuracy. The activations were represented digitally by 3 bits. The
synapses were essentially multiplying DACs, and the sum was done in
analog. The chip ran at 20MHz and was capable of 4x10° synaptic
operations per second. Just as in Net32k, ANNA had shift registers that
allows it to run realistic ConvNet architectures with 130,000 connections
in about 1ms, or about 500 times faster than the best workstations at
the time, with comparable accuracy on zip code digit recognition [16].
Both Net32k and ANNA came close to being used in commercially
deployed applications (postal envelopes and bank-check reading), but
were eventually dropped for software implementations on floating-point
DSPs. The lessons one can draw from this history is that: (1) bringing
exotic fabrication technologies and architectural concepts to market is
difficult; (2) system-level performance is considerably more important
than raw speed. It took only two years after ANNA for FPGAs to become
sufficiently powerful to run ConvNets at the same speed using non-
conventional number representations [17].

By the mid-1990s, ConvNet applications had been widely deployed by
AT&T and its subsidiaries for reading documents, and by the late 1990s,
somewhere between 10% and 20% of all bank checks in the US were
automatically read by the ConvNet-based system developed by our team
[18]. But by the mid 1990s, interest in neural networks had waned in
the machine-learning research community and a second “neural
network winter” set in, that was to last over a decade.

The reasons for this winter are somewhat linked with all of hardware,
software, and data. Neural networks required a lot of data, but, in the
pre-Internet days “large” datasets were available only for a few tasks,
such as handwriting and speech recognition. Second, computer
hardware was limited. Furthermore, the workhorse of ML research, Unix
workstations from SUN or SGI, were typically capable of only
10MFLOPS. Correspondingly, training a simple ConvNet for handwritten
character recognition could take weeks. Third, software tools had to be
built from the ground up. This was before the pre-eminence of Matlab,
Python, and other interactive languages suitable for numerical work.
Léon Bottou and | started developing a neura-network simulator with a
home-grown Lisp-dialect front end in 1987. This system, called SN,
eventually inaugurated the idea of neural networks as computational
graphs of standard parameterized modules with automatic
differentiation [19], a concept eventually picked up by frameworks like
Theano, Torch, Caffe, and now TensorFlow, and PyTorch. This was
before it was common-place for companies to release code in open
source, and it is not until 2002 that it was open-sourced under the name
Lush, as we were leaving AT&T. By then, few people were interested in
neural networks.

At the tail end of this second winter, efforts to implement ConvNets on _

FPGA resumed at my NYU lab with the Xilinx Virtex4-based CNP project
in 2008 [20], and the Virtex6-based NeuFlow project in 2010 [21].
NeuFlow revived the idea of dataflow stream processing in which a
number of configurable operators can be dynamically assigned different
functions, such as convolution, non-linear mapping,
pooling/subsampling or arithmetic operations, all interconnected with
suitable FIFOs to chain multiple operations without having to write
intermediate results to external memory. Performance when running a
GonvNet was roughly 150x10° operations per second, consuming 10W.
Dataflow stream processors have become a popular design for ConvNet
accelerators, such as the Eyeriss project [23, 24] which exploits the
high level of data reuse in convolution operations.

Around 2003, Geoffrey Hinton (University of Toronto), Yoshua Bengio
(University of Montréal) and | (having just left industry and joined NYU),
with funding from the Canadian Institute for Advanced Research, started
a series of research projects, workshops, and summer schools with a
deliberate goal of reviving the interest of the ML community in neural
networks. By 2007, enough researchers became interested again,
following compelling new results in unsupervised layer-wise learning
of very deep networks [25]. That is when the domain was rebranded as
Deep Learning. Later, innovations such as using rectifying non-
linearities (ReLU) instead of sigmoids and using dropout for
regularization enabled purely supervised backprop training of very deep
networks (with a dozen layers). By 2009, groups at Microsoft, Google,
and IBM, were achieving significant reductions in error rates in speech
recognition by replacing acoustic models based on Gaussian Mixture
Models with deep networks [26]. Within 18 months, these systems were
deployed commercially on Android phones and other platforms.
Simultaneously, Collobert and Weston, then at NEC Labs, showed that a
type of ConvNet architecture could produce vector representations of words
that yielded record-breaking results on various natural language processing
tasks [27, 28]. But the NLP community was initially skeptical and deep
learning did not become dominant in NLP until quite recently.

Meanwhile, ConvNets were starting to produce record-breaking results on
a number of image recognition tasks, such as semantic segmentation [29]
and pedestrian detection [30], but the results were largely ignored by the
computer vision community. Then in late 2012, Alex Krizhevsky working
in Geoffrey Hinton’s lab produced a very efficient implementation of
ConvNets on GPUs. He was not the first person to do so (researchers at
Microsoft, Stanford, IDSIA, and other places had done it before), but his
implementation was efficient for very large and very deep ConvNet, allowing
the team to win the ImageNet competition (object recognition in images
with 1000 categories, and 1.3M training samples), reducing the top-5 error
rate from 25% to 16% [31]. This sent shockwaves through the computer
vision community. The team made its code available in open source, and
within 2 years, almost everyone in the field was using ConvNets.

The lesson from this experience is that, The availability of suitable hardware
and simple-to-use open-source software is critical to the wide adoption of a
class of methods by the community. Good results are essential but not
sufficient.

2 The Need for DL Hardware

Is DL-specific hardware really necessary? The answer is a resounding yes.
One interesting property of DL systems is that the larger we make them,
the better they seem to work. While this property is true for networks
trained with supervised learning, the trend is to rely increasingly on
unsupervised, self-supervised, weakly supervised or multi-task learning,
for which larger networks perform even better. The demands on DL-specific
hardware will undoubtedly increase.

There are five use cases with different hardware requirements: (1) DL
research and development; (2) off-line training of DL models for
production; inference on servers in data centers; (4) inference on mobile
devices and embedded systems; (5) on-line learning on servers and mobile
devices.
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2.1 DL Research and Development: The requirement is for HPC-
type multi-node machines, each hosting multiple GPUs or other
flexible/programmable devices with fast 32-bit floating-point
performance (FP-32). The communication network must be high
bandwidth and low latency to allow for the parallelization of training
large models on large datasets. Using FP-32 is necessary because one
must be sure that when an experiment fails, it is not because of a lack
of numerical accuracy. This use case requires high flexibility,
programmability, extensive libraries, and efficient MPI-style
communication libraries. Price and power consumption are relatively
secondary to performance and flexibility. For most types of DL models,
parallelization can be done easily by distributing multiple training
samples across processing elements, GPUs, or cluster nodes. However,
batching multiple training samples at the level of a GPU is neither
desirable, nor always possible. The best architectures are those that can
be saturated with the smallest batch of samples.

2.2 Off-Line Training of Well-Understood Models: Once a model
architecture has been tested and deployed, the process of retraining it
periodically as new data becomes available can be optimized. It is possible to
perform routine training on specialized hardware with reduced-precision
arithmetics, such as 16-bit float (supported by NVIDIA GPUs and Google’s
TPU), fixed point, or more exotic number systems. Requirements for low-
latency training and high levels of parallelization are less stringent than in R&D
scenarios.

2.3 Inference on Servers: Today, much of the computational load of DL
systems is spent running neural networks in data centers. However, the volume
is growing quickly. For example, Facebook performs 3x10™ predictions per
day (some of which are run on mobile devices). Many are relatively “simple”
neural networks with sparse inputs used for newsfeed and advertisement
ranking and for text classification [32]. But a lot of computation goes into larger
ConvNets for image, video, and speech understanding, as well as for
language translation. Every day, users upload 2 to 3 billion photos on
Facebook. Each photo goes through a handful of ConvNets within 2
seconds of being uploaded. A large ConvNet trunk extract features used
for generic tagging, objectionable content filtering (nudity and violence),
search, and so on. Other ConvNets perform OCR of text in images (to
detect hate speech), face detection and recognition, caption generation
for the visually impaired, and a few other tasks. As communication
services, such as live video, further expand, large-scale spatio-temporal
ConvNets are being deployed to perform action recognition [33], speech
recognition for subtitling, and language translation [34], all in real time
with minimum latency. For this use case, power consumption and cost
are important, flexibility and raw performance are secondary, and
communication latency is unimportant. The ideal architecture is a
specialized DL-inference accelerator sitting in a standard data-center
server node. Since much of the computation is spent performing
convolution, a convolutional net accelerator working on individual
samples (not batches) is ideal. The requirements of the automotive
industry for autonomous driving systems are somewhat similar, with
considerably more stringent requirements on latency.

2.4 Inference on Mobile and Embedded Devices: The ubiquity of
smartphones, and the upcoming availability of self-contained wearable
devices for augmented reality (AR) and virtual reality (VR) are putting
heavy demands on DL-inference accelerators with very-low power
consumption. Real-time tasks require that the DL system be run on the
device without the latency of a round-trip to a server. Applications
include feature tracking and 3D reconstruction for AR, object
segmentation/recognition, OCR in natural scenes, real-time language
translation, and speech-based virtual assistants. Beyond mobile and
wearables, low-cost DL chips will appear in cameras, appliances,
autonomous surveillance and ground maintenance systems, and toys.

2.5 Rethinking Arithmetics: Given the robustness of DL systems to
arithmetic imprecision, there is a distinct possibility that using
unconventional number representations can improve efficiency for
inference on servers and embedded devices. For example, [35] shows
that an 8-bit logarithmic number system combined with a Kulisch

accumulator leads to significant reduction in power consumption, while
yielding negligible degradation in accuracy for a ResNet-50 network
trained on ImageNet. Extended to 16 bits, this number system shows
significant reduction in both power and silicon area over standard 16
bit floating point formats.

3 Present and Future Deep-Learning Architectures

The word “architecture” in the context of DL designates the graph of
functional modules, not the architecture of the underlying hardware.
Typical DL architectures are composed of a number of basic modules:
multiple convolutions in 1D, 2D, and 3D; linear operators (matrices);
linear operators applied to sparse inputs (word embedding lookup tables
for NLP); divisive normalization; element-wise functions;
pooling/subsampling; element-wise operators; bilinear operators
(multiplicative interactions for attention); and so on. Low-level
operations are often performed on a batch of multiple samples, simply
because parallelization is simple. But there is no algorithmic reason to
batch multiple samples. Thus, much of the DL R&D activity goes into
designing architectures that are appropriate for a class of problems.
Such popular families of architectures include ConvNets, multi-layer
LSTM, Transformer Networks, and architectures with “attention”
(multiplicative interactions).

3.1 DL Architectures Today

Video, image, and speech recognition, as well as language translation
and NLP, use a variety of ConvNet architectures. Figure 1.1.3, from [22],
shows the top-1 accuracy on ImageNet of various ConvNet designs as
a function of number of operations. In such practical applications, much
of the computation is spent performing convolutions in the lower layers.
The upper layers are typically less compute bound but more memory
bound [24]. The spatio-temporal resolution of layer activations typically
diminishes in the upper layers, but the number of channels or feature
types typically increases.

In computer-vision applications, the trend is to apply ConvNets to an
entire image so as to detect, segment, and recognize objects of any size
at any location [37, 38, 39, 40, 62]. In such networks, all the layers are
convolutional, though some of the top layers, sometimes called “fully
connected, can be viewed as convolutions with a 1x1 kernel.

An increasingly popular class of ConvNet architectures for image
segmentation, reconstruction, and object detection are the so-called
Feature U-Net, Feature Pyramid Network, RetinaNet, and variants [39,
40, 41]. They can be viewed as a ConvNet encoder topped by a “reverse
ConvNet” decoder whose role is to produce an image at the same
resolution as the input (see Figure 1.1.4). They contain skipping
connections from each layer of the encoder to the layer of the
corresponding resolution in the decoder. The number of applications of
this type of architecture is likely to increase in image annotation,
autonomous driving, and medical image analysis [42].

Similar architectures are used in the context of image generation and
video prediction [43, 46]. Video prediction is a subject of wide interest
because it may allow future systems, such as robots or self-driving cars,
to predict what is going to happen in their environment and to plan
accordingly [44, 45].

In translation and language understanding, the Transformer Network
architecture is increasingly popular [36]. It makes extensive use of
multiplicative interactions.

3.2 Architectural Elements of Future DL Systems

We are witnessing an evolution in the types of architecture proposed
by DL researchers, which may determine what hardware will be required
in the near future. Generally speaking, the evolution is towards more
sophisticated network architectures, dynamic network architectures that
change with each new input in a data-dependent way, inputs and internal
states that are not regular tensors, but are graphs whose nodes and
edges are annotated with numerical objects (including tensors).
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3.2.1 Dynamic Networks, Differentiable Programming: A relatively recent
concept in DL is the idea of dynamic networks. Regular DL systems use a
static network of parameterized modules. But, in increasingly many
applications, the network architecture is dynamic and changes for every new
data point. In effect, dynamic DL systems can be seen as the execution trace
of a program, with conditionals and loops that are input-dependent. DL
frameworks such as PyTorch record a “tape” of this execution trace, which
can be played backwards to back-propagate gradients through the program.
This method is known as “autograd”. The phrase “differentiable programming”
designates the process of writing a program with calls to parameterized
functions that automatically compute the gradient of the function’s output
with respect to the parameters, allowing the function to be finalized through
learning. Dynamic networks are particularly useful in a variety of applications:
for natural-language processing, for data that does not come in the form of a
fixed-sized tensor, for systems that need to activate parts of a large network
on demand in a data-dependent way (such as the Multi-scale DenseNet
architecture [47] shown in Figure 1.1.4) and for “reasoning” networks whose
output is another network specifically designed to answer a particular question
[48, 49] (see Figure 1.1.5).

3.2.2 Neural Networks on Graphs: One of the most exciting recent
developments in DL is neural networks on graphs [50]. Many problems
are difficult to represent with fixed-size tensors or variable-length
sequences of tensors, but are better represented by graphs whose arcs
and nodes are annotated by tensors. This suggests the use of networks
of differentiable modules whose inputs and outputs are annotated
graphs. The idea goes back to Graph Transformer Networks, built to
recognize character strings [18]. But recent incarnations of graph neural
networks have been applied to 3D meshes, social networks, gene-
regulation networks, and chemical molecules. Convolution operations
can easily be defined on irregular graphs: they are defined as diagonal
operators in the eigenspace of the graph Laplacian, which is a
generalization of the Fourier transform. We foresee an increase in the
usage of such networks for a wide variety of applications, which are
likely to violate the assumptions of current DL hardware.

3.2.3 Graph Embedding Networks: Increasingly, DL is used for large-
scale embedding of knowledge bases. For example, using a large
knowledge graph composed of triplets (subject, relation, object), such as
(“Barak Obama”, “was born in”, “Hawaii”) one may train a network to rate
such triplets or to predict one of the elements from the other two. A special
case of this consists in learning a vector for each object and subject, such
as a simple scalar-valued operation between the vectors (distance) will
predict the presence or absence of a particular relation between the object
or subject. These methods, applied on a large scale, are particularly efficient
for recommender systems, and can use hyperbolic metric spaces to
represent hierarchical categories [51].

3.2.4 Memory-Augmented Networks: To endow DL systems with the
ability to reason, they need a short-term memory, to be used as an
episodic memory, or a scratchpad/working memory. For example, if a
system is to answer questions about a series of events (described as a
text), it must be able to store the story in a memory and retrieve the
relevant bits to answer a particular question. This led to the memory-
network architecture [52, 53] in which a recurrent neural nework is
augmented by what amounts to a differentiable associative memory
circuit (see Figure 1.1.5). This associative memory can be quite large
and requires finding the nearest neighbors to a key vector very
efficiently. As DL systems are increasingly used for high-level cognitive
tasks, such memory modules will become commonplace and very large,
requiring hardware support.

3.2.5 Complex Inference and Search: Most of today’s DL systems
simply produce an output given an input. But complex reasoning
requires that the output variable actually be an /nput to a scoring
network whose scalar output (akin to energy) indicates the
incompatibility between the input and an output proposal. An inference
procedure must search for the output value that minimizes the energy.
This type of model is called an energy-based model [54]. If the energy-
minimizing inference procedure is gradient-based, inference hardware
will need to support back-propagation.

3.2.6 Sparse Activations: As the size of DL systems grows, it is likely that
the modules’ activations will become increasingly sparse, with only a subset
of variables of a subset of modules being activated at any one time. This is
akin to how the brain represents information: on average, neurons in the brain
are at 2% of their maximum activation, and most neurons are quiet
most of the time, which is good for power dissipation. Examples of
explicitly sparse networks already exist (for processing volumetric
imaging data [56]).

3.2.7 Overall:

New architectural concepts such as dynamic networks, graph data,
associative-memory  structures, and inference-through-minimization
procedures are likely to affect the type of hardware architectures that will be
required in the future.

4 The Revolution will not be Supervised

With all the hype around the new Al and DL, the way machines learn today
is vastly less efficient than the way humans and animals learn. Almost all
practical applications of DL use supervised learning (SL), in which the
system is fed the desired output during training, with a tiny minority using
reinforcement learning (RL). Most humans are capable of learning to drive
a car in about 30 hours of training without ever causing accidents. In
contrast, current model-free RL methods would likely require millions of
hours of practice, with numerous accidents, for an autonomous car to learn
to drive. This is not a problem in easy-to-simulate fully-observable
environments with discrete state, such as the game of go or chess. But, it
does not work in the real world! Obviously, our current learning paradigms
are missing a key ingredient.

One hypothesis is that this missing ingredient is self-supervised learning.
The bulk of learning in humans and animals is self-supervised: we learn
enormous amounts of background knowledge about how the world works
by observation in the first days, weeks, and months of life. In particular,
we learn intuitive physics and the properties of the physical world. By the
age of 9 months, babies understand object permanence, stability, animate
vs inanimate objects, stability, gravity, inertia, and so on. The ability to
predict what is going to happen in the world is what allows us to learn to
drive without causing accidents: our world model allows us to anticipate
the consequences of our actions, to maintain the car on the road, and to
avoid disasters.

The idea of self-supervised learning is to train a machine to predict any
subset of its input from other subsets (with a possible overlap between
the subsets). For example, given a 6-frame video clip, one could train a
DL system to predict the last two frames from the first four.

Why should SSL be more efficient than either RL or SL? In RL, the system
produces an output (often an action or sequence of actions) and gets in
return a single scalar value representing the “reward for this action.
Learning a complex task in this scenario requires a very large number of
trials, and a large number of errors. While the process works fine for fully-
observable games (such as chess and go) where millions of trials can be
generated through self-play, it is largely impractical in the real world. A
model-free RL system would require millions of hours of driving and
numerous crashes to train a car to drive itself. The number of trials required
is large because the feedback from the environment is information-poor.
In SL, the system is given the correct answer, generally in the form of a
target output vector. While this is less information-poor than in RL, it still
requires a lot of training samples to capture the essence of the problem.
On the other hand, SSL asks the machine to predict a large amount of
information in the form of a high-dimensional signal (such as a whole video
frame). More complex models with more parameters can be learned with
a given number of samples or trials. The main difficulty is that predicting
the future of a video is not achievable exactly because the world is not
entirely predictable. If one uses a least-square criterion to train a video
predictor, the resulting predictions are blurry frames: an average of all the
possible futures. To make sharp predictions, one must have a set of latent
variables that, when passed through a predictor, parameterize the set of
plausible predictions. One technique used to train such models is
Generative Adversarial Networks (GAN) [59], which for training uses two
networks simultaneously: a generator that makes predictions using
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observations and a source of random vectors drawn from a known
distribution, with a discriminator whose role is to produce a scalar energy
indicating whether a generated prediction is plausible or not. The
discriminator is trained to distinguish real data (low energy) from generated
predictions (high energy). The generator trains itself to produce predictions
that the discriminator cannot tell are fake. To do so, the generator uses the
gradient of the discriminator’s output energy with respect to its input to
compute how to modify its predictions, and thereby modify its parameters.
Variations of GANs have produced stunning results in image generation
[61, 62]. Other latent-variable generative models, such as Variational Auto-
Encoders [60] and regularized latent variable models [45] have also
produced good results.

One hope is that training a system to predict videos will allow it to
discover much of the hidden regularities, geometry, and physics of the
world, such as the fact that the scenery changes in particular ways as
the camera moves, and that certain objects occlude others and can
move independently. Such predictions can be done in pixel space [43,
44], or in higher-level representations (such as instance segmentation
maps obtained by a pre-trained system [46]).

The use of predictive models that not only predict the evolution of the
environment, but also predict the consequences of actions, is key to
reducing the number of trials a system needs to learn a skill. | predict that
self-supervised latent-variable predictive models will be the centerpiece of
intelligent systems based on model-predictive control and model-based
reinforcement learning for such applications as robotic grasping and
manipulation [44] and autonomous driving [45]. Figure 1.1.6 shows a
latent-variable predictive model that predicts a visual representation of the
surroundings of a car. This kind of model can be used to predict multiple
scenarios of how surrounding cars are going to move, and to plan a driving
policy accordingly. .

If self-supervised learning eventually allows machines to learn vast
amounts of background knowledge about how the world works through
observation, one may hypothesize that some form of machine common
sense could emerge! One form of common sense is our ability to fill in the
blanks, using our knowledge of the structure and constraints of the world.

Future DL systems will largely be trained using a form of self-supervised
learning. These system will be much larger than they are today, because the
amount of data with which they can be trained (raw video) is essentially
unlimited. Such systems will eventually be trained to acquire vast amounts of
background knowledge so as to acquire a form of common sense. New high-
performance hardware will be required to enable such progress.

5 Requirements for Future DL Hardware and Software

5.1 How Will DL Software Evolve?

Clearly, what is needed is a software framework for differentiable
programming that is both interactive, flexible, dynamic, and efficient.
Although frameworks such as PyTorch, TensorFlow, and others are moving
in that direction, the main obstacle is that people love Python, largely
because of its gigantic set of libraries. But Python is very slow and memory
hungry. It is often impractical to develop high-volume applications or
embedded applications that rely on Python at runtime. However, for static
compute graphs, there is no issue: one can export the graph to adhere to
a standard format, such ONNX (Open Neural Net Exchange), and use one
of the numerous ONNX-compliant backends. On the other hand, for
dynamic networks, there are two main options: One is to provide a compiler
for a sufficiently large subset of Python that can produce Python-
independent executables for DL (such as Torch.Jit in the recently-released
PyTorch-1.0 [64]). This may also require an auxiliary domain-specific
language to specify low-level numerical operations (on tensors and graphs)
such as Tensor Comprehensions [55]; A second option is to design a
suitable compilable language from scratch. It would have to be interactive
and dynamic, have safe parallelism, and use type inference as much as
possible, perhaps something resembling Julia or Skip [63] with good
support for scientific computing. However, dedicated user’s desire to
access the vast repository of Python libraries will limit its potential
adoption.

5.2 Hardware for Training

One problem is that sparsity, architecture dynamicity, and modules that
manipulate non-tensor data (graphs), break the assumption that one
can perform computation on batches of identically-sized samples.
Ufortunately, with current hardware, batching is what allows us to
reduce most low-level neural network operations to matrix products,
and thereby reduce the memory access-to-computation ratio. Thus, we
will need new hardware architectures that can function efficiently with
a batch size of one. As well, handling sparse structured data is another
requirement. Increasingly, input data will come to us in a variety of
forms, beyond tensors, such as graphs annotated with tensors and
symbols.

Down the line, one can imagine architectures and learning algorithms
that favor sparse activations in the network. When most units are off
most of the time, it may become advantageous to make our hardware
event driven, so that only the units that are activated consume
resources. Such sparse networks, such as Submanifold Sparse
ConvNets (implemented in software) have been shown to be very
effective for processing sparse data, such as 3D scenes, which are
represented by voxel arrays that are largely empty [56]. Sparse
activation is one of the features that makes the brain so power-efficient.

5.3 Hardware for Inference

While demand for data-center and cloud-based inference will grow,
future DL applications will increasingly run on mobile phones,
wearables, home apppliances, vehicles, |oT devices, and robots.
Applications in augmented and virtual reality and telepresence will
require extremely low-power ASICs for DL inference for such things as
real-time/low-latency object tracking, 3D re-construction, instance
labeling, facial reconstruction, predictive compression and display.

In the short and medium term, the bulk of the computation will be
convolutions. Since batching is out of the question, hardware will have
to exploit the regularities of convolutions instead of being mere matrix-
product engines.

Ultimately, the solution to power constraints may well be the exploitation
of sparse activations, perhaps using event-based computation. In any
case, it may exploit the use of exotic number representations (the 8-bit
logarithmic representation of [35]).

6 The Long Term Outlook

In the long run, could we see a return to analog implementations?
Perhaps programmable resistor technology will become sufficiently
compact, reliable, durable, and configurable for DL applications. But
since this would require one unmovable physical memory cell per
parameter in the network, only activations could be circulated (assuming
they are converted to digital representation), and hardware multiplexing
would be limited to sections that share weights (as in the ANNA chip).
It is very unclear whether analog implementations provide any power
dissipation advantages over digital, and current evidence seems to point
in the opposite direction.

A number of authors have been advocating architectures with spiking
neurons. Unfortunately, the performance of spiking neuron circuits
seems considerably inferior to that of traditional digital architectures for
realistic ConvNet-type networks [57]. Current learning algorithms do
not take advantage of the peculiarities of spiking networks, and no
spiking-neuron learning algorithms has been shown to come close to
the accuracy of backprop with continuous representations.

The important trends discussed in this paper include: (1) more self-
supervised learning, resulting in larger network architectures; (2)
dynamic network resulting from differentiable programs whose
architecture changes for each new sample; (3) the need for hardware
that is efficient for batch-size 1, implying the end of reliance of matrix
products as the lowest-level operator; (3) exotic number representation
for inference on low-power hardware; (4) very large networks with very
sparse activations, that new architectures could exploit for power
reduction; (5) new operators such as fast K-nearest neighbors for
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(differentiable) associative-memory modules; (6) networks that
manipulate annotated graphs instead of tensors. However, chances are
that the bulk of the computation in future DL systems will still consist
primarily of convolutions.
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Figure 1.1.1: Early neural network chips from Bell Labs. (A) 1986: 12-
resistor array, 6x6 microns [1]; (B) 1987: 54x54 analog array with
programmable ternary weights [2]; (C) 1991: Net32K Convolver 256x128
programmable ternary weight array with FIFOs for convolutions [14]; (D)
1991: ANNA ConvNet chip 64x64 array with 6-bit weights and 3-bit
activations [15].
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Figure 1.1.5: (Top) Memory Network architecture [52]; (Bottom) Key-
Value Memory Network architecture for question answering [53]. Both
architectures contain a central processing network connected with a
“soft” associative memory circuit that stores facts. The memory module
is a “soft” associative memory circuit in which the “address”vector is
compared with each key vector through a dot product, producing scalar
matching scores. The scores are normalized to sum to one. The output
is a linear combination of the stored value vectors, weighted by the
normalized scores.
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Figure 1.1.2: An example of Convolutional Network architecture for
image recognition. Not all layers are represented [37].
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Figure 1.1.4: (Top) Multi-Scale DenseNet with conditional computation
for accelerated results [47]. (Bottom) RetinaNet architecture for image
semantic segmentation [40].

Figure 1.1.6: An example of self-supervised learning. A latent-
variable model predicts how surrounding cars will move relative to
the ego car (in the center). The model takes a few past frames and
predicts the future relative positions of other cars, conditioned on a
vector of latent variables. It is trained using data collected from traffic
cameras overlooking roads. Different samplings of the latent variable
produce different futures. This model can be used to plan or to train
an artificial driver to minimize the probability of collision.
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