
BOOSTING OF FACTORIAL CORRESPONDENCE ANALYSIS FOR IMAGE RETRIEVAL

Nguyen-Khang Pham* **, Annie Morin*, Patrick Gros*

* IRISA
Campus Universitaire de Beaulieu, F-35042 Rennes Cedex

{pnguyenk, amorin, pgros}@irisa.fr

** Cantho University
Campus III, 1 Ly Tu Trong Street, Cantho City, Vietnam

pnkhang@cit.ctu.edu.vn

ABSTRACT

We are concerned by the use of Factorial Correspondence
Analysis (FCA) for image retrieval. FCA is designed for
analysing contingency tables. In Textual Data Analysis (TDA),
FCA analyses a contingency table crossing terms/words and
documents. For adapting FCA on images, we first define ”vi-
sual words” computed from Scalable Invariant Feature Trans-
form (SIFT) descriptors in images and use them for image
quantization. At this step, we can build a contingency table
crossing ”visual words” as terms/words and images as docu-
ments. In spite of its successful applications in information
retrieval, FCA suffers from large dimension problem because
of the diagonalization of a large matrix. We propose a new
algorithm, CABoost, which overcomes this large dimension
problem of FCA. The data are sampled by column (word)
and a FCA is applied on the sample. After some samplings,
we finally combine separated results by a weighting - Princi-
ple Component Analysis (PCA). The numerical experiments
show that our algorithm performs more rapidly than the clas-
sical FCA without losing precision.

1. INTRODUCTION

Content based image retrieval (CBIR) aims to searching im-
ages which share some visual parts with a query in large databases.
This is a very difficult task. It is due to occlusions, back-
ground clutters, and viewpoint or orientation changes. Re-
cently, the use of local descriptors in images has shown to be
a good choice for image analysis. Contrary to global descrip-
tors which are computed from entire image, local descriptors
are extracted at particular interest points in image. This al-
lows finding images which share only one or some similar
visual elements with the query. Initially vote-based meth-
ods were used for image retrieval by matching interest points
[1, 2]. Later, the methods developed originally for Textual
Data Analysis such as LSA (Latent Semantic Analysis) [3],
pLSA (probabilistic Latent Semantic Analysis) [4, 5], LDA

(Latent Dirichlet Allocation) [6] have been adapted on im-
ages [7, 8, 9, 10]. In Textual Data Analysis, these meth-
ods are based on a bag-of-words model. They take as input
a co-occurrence matrix (called also contingency table which
crosses documents and terms/words) and try to reduce dimen-
sions. When adapting on images, we have images as docu-
ments and ”visual words” as terms/words. Among the dis-
advantage of the methods above, we find the use of an ad
hoc model and an EM algorithm to seek a local optimum and
the difficulty to interpret the results. Most of the works use
such methods as black boxes. Here, we focus on the use of
Factorial Correspondence Analysis (FCA) for the retrieval of
images. This work is motivated by the successful applica-
tion of FCA on textual data [11]. FCA reduces the space
representing images and defines the similarity among images
in a smaller space. In early work, we proposed the use of
FCA for image retrieval [12]. It was shown that FCA per-
formed better than term frequency - inverse document fre-
quency weight (TF*IDF) [13] and PLSA. Nevertheless, one
of the main problems of FCA is matrix diagonalisation. This
task is very time-consuming especially with high order matri-
ces. To overcome this problem, we propose a new algorithm,
called CABoost, which reduces the learning time when the
vocabulary’s size is large.

The article is organized as follows: we briefly describe
the FCA method in the section 2. Section 3 presents word
construction and image representation. The new algorithm,
CABoost, is presented in the section 4. Section 5 shows some
numerical results. In the last section, we present some per-
spectives for this work.

2. FACTORIAL CORRESPONDENCE ANALYSIS

FCA is a classical exploratory method for the analysis of con-
tingency tables. It was proposed by J. P. Benzecri [14] in the
linguistic context, i.e. textual data analysis. The first study
was performed on the tragedies of Racine. FCA on a table



crossing words and documents allows answering the follow-
ing questions: Is there any proximity among certain words?
Is there any proximity among certain documents? Is there any
link among certain words and certain documents? FCA like
most factorial method uses a singular value decomposition of
a particular matrix and allows viewing words and documents
in a reduced space. This reduced space has a particular propri-
ety where points are projected (words and/or documents) with
a maximum inertia. In addition, FCA provides some relevant
indicators for the interpretation of the axes as the contribu-
tion of a word or a document to the inertia of the axis or the
representation quality of a word and/or document on an axis
[15, 11]. We now briefly describe the method:

Given a contingency table, F = {fij}M,N , (N < M) we
normalize F to X by:

s =
M∑
i=1

N∑
j=1

fij

xij =
fij

s
, ∀i = 1..M, j = 1..N

and note:

pi =
N∑

j=1

xij , ∀i = 1..M qj =
M∑
i=1

xij , ∀j = 1..N

P =




p1 0
. . .

0 pM


 Q =




q1 0
. . .

0 qN




To determine the best sub-space for data projection, we
calculate the eigenvalues and eigenvectors of the matrix V =
XT P−1XQ−1 with size N × N where XT is transpose of
X .

We then obtain the eigenvalues λ and eigenvectors µ of
the matrix V:

λ =




λ1

λ2

...
λN


 µ =




µ11 µ12 ... µ1N

µ21 µ22 ... µ2N

...
...

. . .
...

µN1 µN2 ... µNN




We keep only K(K < N) first eigenvalues and their cor-
responding eigenvectors. These K eigenvectors constitute an
orthonormal basis of the reduced space (also called, factor
space). The number of dimensions passes from N to K. The
documents (images) are projected in the reduced space by the
following:

Z = P−1XA where A = Q−1µ (1)

In this formula, P−1X represents line profiles and A is
the transition matrix associated to the FCA. The new coordi-
nates of the terms/words are computed by:

W = Q−1XT Zλ−1/2 (2)

An unseen document (i.e. query) r = [r1 r2 . . . rN ] will
be projected in the reduced space by the transition formula
(1):

Zr = r̂A where r̂i =
ri∑N

j=1 rj

(3)

3. IMAGE REPRESENTATION

In order to adapt FCA on images, we must represent the image
corpus in the form of contingency table. Here images are
treated as documents and ”visual words” (to be defined) as
terms/words.

Words in the images, called ”visual words”, must be cal-
culated to form a vocabulary of N words. Each image will
be represented by a word histogram. The construction of vi-
sual words is processed in two steps: (i) computation of local
descriptors for an image set, (ii) classification (clustering) of
obtained descriptors. Each cluster will correspond to a vi-
sual word. Local descriptors in an image are also computed
in two stages: we first detect the interest points in the image.
These points are either maximums of Laplace of Gaussian
[16], or 3D local extremas of Difference of Gaussian [1], or
the points detected by a Hessian-Affine detector [2]. Figure 1
shows some interest points detected by a Hessian-Affine de-
tector. The descriptor of interest points is then computed on
gray level gradient of the region around the point. The scal-
able invariant feature transform descriptor, SIFT [17] is often
preferred. Each SIFT descriptor is a 128-dimensional vector.
An example of SIFT is shown in figure 2. The second step
is to form visual words from the local descriptors computed
in the previous step. Most of the works perform a k-means
on descriptors and take the averages of each cluster as visual
word [7, 8, 9, 10, 18]. After building the visual vocabulary,
each descriptor is assigned to the nearest cluster. For this, we
compute, in R128, distances from each descriptor to the rep-
resentatives of previously defined clusters. Thus an image is
characterized by the frequency of its descriptors and the im-
age corpora will be represented in the form of a contingency
table crossing images and clusters (visual words).

In our experiments, we use the method described in [2] to
detect interest points. The vocabulary is built using a k-means
with about 300000 descriptors drawn randomly (one third for
each category: faces, motorbikes, airplanes, cars and back-
ground). The obtained vocabulary consists of 2224 words
from 4090 images. The number of words in the vocabulary
was chosen by Sivic [9].

4. BOOSTING OF FCA

FCA invokes an ”eigensolver” for eigenvalues and eigenvec-
tors. This task is time and memory consumed for high order
matrix. The main idea for overcoming this problem is sam-
pling on the data and applying FCA on each sample. By this



Fig. 1. Interest points detected by Hessian-Affine detector

Fig. 2. A SIFT descriptor computed from the region around
the interpret point (the circle): gradient of the image (left),
descriptor of the interest point (right)

way we can benefit from the information of all words with a
low cost because we diagonalise only small matrices.

4.1. Word sampling

We explore the partition of words into two ways: determinis-
tic and random. Note that it is also possible to combine two
approaches. In the deterministic approach, words are sorted
in descending order by their frequency and by the number of
images in which they appear. So we obtain one list of words
for each criterion. Two lists are merged to give Size (Size
is a fixed parameter) first words that appear at the same time
in the both lists. We then apply FCA on only selected words.
After the first FCA, words which contribute a lot to the iner-
tia of some first axis, are removed from two lists. About two
third selected words are removed. The fact that we remove
some words with high contribution allows us to find new top-
ics with remained words because a group of words with high
contribution to the inertia of an axis defines a topic. We keep
on choosing Size next words for the second FCA in the same
manner such as with the first FCA after removing some words
and so on for next iterations. In random approach, the sim-
plest solution is that words are uniformly sampled. The result
could be slightly improved when the word distribution was
updated by under weighting the words which were selected
in previous iterations. This motivated a hybrid approach in
which we updated the word distribution by taking into ac-

count the contribution of words to the inertia of axes as in
the deterministic approach. The distribution of words can be
initialized uniformly or by the inverse of their order in two
sorted lists.

4.2. Result merging

The final distance between two images is computed from all
results of FCA on samples:

d(a, b) =
T∑

i=1

αidi(a, b) (4)

Where di(a, b) is the distance between two images a and b fol-
lowing the ith model. The scalars αi could be determined as
in [19] where we performed a PCA in considering groups of
words as points in RM∗Size with M is the number of images
and Size is the number of words in a group. αi is the coordi-
nate of ith group on the first axis. The point clouds could be
also stretched by Generalized Procrustes Analysis [20]. One
of the simplest weighting described in Multiple Factor Anal-
ysis [19] normalises point clouds so that their inertia on the
first axis is equal to one. By this way αi is set to the inverse
of the square root of the first eigenvalue of the ith model.

However, the combination of the separated results (4) leads
to increase the retrieval time because we have to compute the
distance on all T models. To solve that, we propose to apply
a PCA on weighted results in order to reduce the dimension.
PCA allows to eliminate the redundancy and to look for com-
mon factors from all sub results [19]. The algorithm is finally
given in the table 1.

5. NUMERICAL RESULTS

We test our algorithm on the Caltech4 dataset [9] drawn form
Caltech101 [21]. The algorithm is implemented in C++ us-
ing CLAPACK library [22]. The precision - recall curve is
used for performance comparison. We use TF*IDF weight-
ing schema [13] with cosine distance as baseline method. In
all of our experiments, FCA (classical or boosting of FCA)
gives much better results than TF*IDF in time retrieval and
result quality.

5.1. Dataset

The Caltech4 database contains 4090 images divided into 5
categories. Table 2 describes this database.

5.2. TF*IDF

In TF*IDF weighting schema, each element F (i, j) in the
contingency table is normalized to tf(i, j) and weighted by
idf(j) where tf(i, j) is the number of words j that appears
in the image i divided by the number of words in the image i



CABoost Algorithm
Input:

F : contingency table crossing images and visual
words
Size: sampling size
T : number of samplings

Output:
Z: new representation of images

Algorithm:
For i = 1 to T do

1 Sample Size columns (words) from F :
S = Sample(F , Size)

2 Apply FCA on the sample S and obtain the
new representation of images Z(i) by formula
(1):

Z(i) = FCA(S)
3 Normalize Z(i) by dividing by the square root

of the first eigenvalue:
Z(i) = 1√

λ
(i)
1

Z(i)

End For
4 Stack Z(i) by column

A = [Z(1) Z(2) . . . Z(T )]
5 Apply PCA on A

Z = PCA(A)
Return Z

Table 1. CABoost Algorithm

and idf(j) = ln(M/Mj) where Mj is the number of images
that contain the word j, and M is the number of images in the
database. The cosine distance is usually used for similarity
measure.

5.3. FCA for image retrieval

After applying FCA on the contingency table, we keep only
K first axes and use them for similarity measure computation.
We experiment with both distances: Euclidean and cosine and
we find that cosine distance gives better result than Euclidean
one. We take K equal to 20 for all of experiments.

Category Number of images
faces 435
motorbikes 800
airplanes 800
backgrounds 900
cars (rear) 1155
Total 4090

Table 2. Description of the Caltech4 database

Fig. 3. Images drawn from the Caltech4 database

5.4. Boosting of FCA

There are some parameters that can influent the performance
of the CABoost. Intuitively it can be considered that the larger
sampling size is, the better result we obtain, and the more time
it takes. We recommend to take the sampling size equal to
1/4 the size of vocabulary and to iterate about 15 – 20 times.
The number of iterations is also a factor that affects the result
and the training time. The greater this number is, the better
result we get. We experiment with sampling size equal to 500,
and 20 iterations, the result is given in figure 4. In this test,
CABoost is 3 times faster than the classical FCA and gives an
equivalent result.

To study the impact of parameter T (number of iterations)
we fix the sampling size equal to 500 and try with T equal to
1, 3, 10, and 30. Training time comparison is also shown in
the figure 5 and precision - call curves are shown in the figure
6. It is clear that when the number of iterations increases,
the performance is improved and training time increases too.
In this experiment after 30 iterations, CABoost gives better
result than classical FCA.

Table 3 shows the precision of two approaches: determin-
istic and random at 5, 10, 20, 50 and 100 first returned images.
We find that the random approach takes more advantages than
deterministic one. Because it is possible to combine any word



Fig. 4. Precision - recall curves for performance comparison:
CABoost with sampling size = 500, T (number of iterations)
= 20

#images Deter. Random 1 Random 2 Hybrid
5 0.951 0.958 0.963 0.965

10 0.937 0.943 0.949 0.952
20 0.924 0.928 0.936 0.938
50 0.903 0.906 0.915 0.915

100 0.885 0.886 0.896 0.896

Table 3. Comparison of two approaches: deterministic and
random – #images: number of first returned images; De-
ter.: deterministic approach; Random 1: sampling uniformly
without updating the word distribution; Random 2: under
weighting all of words selected in previous steps; Hybrid: un-
der weighting only words with high contribution in previous
steps.

into group while in the deterministic way, words are grouped
by their frequency. The hybrid approach slightly improves the
result because of under weighting of these words with high
contribution in previous steps. The remained words can con-
tribute to form other topics.

6. CONCLUSION AND FUTURE WORKS

We have presented in this paper a new approach for image
retrieval using SIFT descriptor and the adaptation of FCA on
images. We propose also our new algorithm, CABoost, which
can deal with large vocabulary. The experimentations have
shown that CABoost performs faster and can give better re-
sults than classical FCA. In addition in all cases, FCA (classi-
cal and boosting of FCA) performs much better than TF*IDF.

Fig. 5. Comparison of training time: CABoost (4 first
columns) with sampling size set to 500 and number of iter-
ations equal to 5, 10, 20 and 30 versus classical FCA

The sequences of FCA in CABoost algorithm are independent
(in the case of uniform sampling), therefore it is possible to
use parallel computations to accelerate the training rate. The
merging of results in the section 4.2 could be extended to a
system of multiple search engines where each search engine
corresponds to a step of CABoost. For a query, we ask all the
T engines to get the first images (e.g. 500 first images). And
then these images are sorted by their distance to the query
defined in the formula 4. Another possible improvement is
to combine our method and other methods as CDM (Contex-
tual Dissimilarity Measure) [18], and/or random forest [23]
for dealing with massive data.
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