

Guide to
Advanced Software Testing

For a listing of recent related Artech House titles,
please turn to the back of this book.

Guide to
Advanced Software Testing

Anne Mette Jonassen Hass

a r techhouse . com

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-59693-285-2

Cover design by Yekaterina Ratner

© 2008 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording, or by any information storage and retrieval system, without
permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

10 9 8 7 6 5 4 3 2 1

To the most important women in my life:
my grandmother, Martha,

my mother, Alice,
my sister, Lene,

and my daughter, Lærke

Book_samlet.indb 1 2/19/08 8:12:12 PM

Foreword………… ... xv

Preface…….. ... xvii

A Guide to Advanced Testing xix

I.1 Reading Guidelines .. xx

I.2 Certified Tester, Advanced Level .. xx

 I.2.1 This Book in Relation to the Syllabus xxi

 I.2.2 Ethics for Testers xxvi

I.3 Software Testing Basics .. xxvii

 I.3.1 Terms and Definitions in Testing xxvii

 I.3.2 Testing Is Multidimensional xxviii

 I.3.3 Definition of Testing xxix

Questions..... ... xxx

Appendix IA Vignettes .. xxxi

Basic Aspects of Software Testing .. 1

1.1 Testing in the Software Life Cycle .. 1

 1.1.1 Development Models 2

 1.1.2 Dynamic Test Levels 8

 1.1.3 Supporting Processes 16

1.2 Product Paradigms .. 23

 1.2.1 Systems of Systems 24

 1.2.2 Safety-Critical Systems 25

1.3 Metrics and Measurement .. 28

 1.3.1 Measuring in General 28

 1.3.2 Test-Related Metrics 29

 1.3.3 Analysis and Presentation of Measurements 31

 1.3.4 Planning Measuring 31

Questions..... .. 31

Testing Processes ... 33

2.1 Processes in General .. 34

 2.1.1 The Concept of a Process 34

Contents

• Listen

• Read

• Think

• Try

• Discuss

• Write

R D C T

CR

DD

IC
TT

TT

CR

DD

IC
TT

TT

CR

DD

IC
TT

TT

CR

DD

IC
TT

TT

R D C T

R D C TR D C T

CR

DD

IC
TT

TTCR

DD

IC
TT

TT

CR

DD

IC
TT

TTCR

DD

IC
TT

TT

CR

DD

IC
TT

TTCR

DD

IC
TT

TT

CR

DD

IC
TT

TTCR

DD

IC
TT

TT

I

1

2

vii

Book_samlet.indb 3 21/02/08 18:01:25

 2.1.2 Monitoring Processes 34

 2.1.3 Processes Depend on Each Other 35

 2.1.4 The Overall Generic Test Process 35

 2.1.5 Other Testing Processes 39

2.2 Test Planning and Control .. 39

 2.2.1 Input to Test Planning and Control 40

 2.2.2 Documentation of Test Planning and Control 41

 2.2.3 Activities in Test Planning 41

 2.2.4 Activities in Test Control 50

 2.2.5 Metrics for Test Planning and Control 50

2.3 Test Analysis and Design .. 50

 2.3.1 Input to Test Analysis and Design 51

 2.3.2 Documentation of Test Analysis and Design 51

 2.3.3 Activities in Test Analysis and Design 51

 2.3.4 Requirements 57

 2.3.5 Traceability 60

 2.3.6 Metrics for Analysis and Design 61

2.4 Test Implementation and Execution .. 61

 2.4.1 Input to Test Implementation and Execution 62

 2.4.2 Documentation of Test Implementation and Execution 62

 2.4.3 Activities in Test Implementation and Execution 62

 2.4.4 Metrics for Implementation and Execution 71

2.5 Evaluating Exit Criteria and Reporting .. 71

 2.5.1 Input to Test Progress and Completion Reporting 72

 2.5.2 Documentation of Test Progress and Completion Reporting 72

 2.5.3 Activities in Test Progress and Completion Reporting 72

 2.5.4 Metrics for Progress and Completion Reporting 73

2.6 Test Closure ... 74

 2.6.1 Input to Test Closure 74

 2.6.2 Documentation of Test Closure 74

 2.6.3 Activities in Test Closure 75

 2.6.4 Metrics for Test Closure Activities 76

Questions..... .. 76

1

2

3
4

Contentsviii

Book_samlet.indb 4 21/02/08 18:01:26

Test Management .. 79

3.1 Business Value of Testing .. 79

 3.1.1 Purpose of Testing 80

 3.1.2 The Testing Business Case 81

3.2 Test Management Documentation ... 85

 3.2.1 Overview 85

 3.2.2 Higher Management Documentation 86

 3.2.3 Project Level Test Management Documentation 96

3.3 Test Estimation .. 106

 3.3.1 General Estimation Principles 106

 3.3.2 Test Estimation Principles 107

 3.3.3 The Estimation Process 108

 3.3.4 Estimation Techniques 109

 3.3.5 From Estimations to Plan and Back Again 114

 3.3.6 Get Your Own Measurements 115

3.4 Test Progress Monitoring and Control ... 115

 3.4.1 Collecting Data 116

 3.4.2 Presenting the Measurements 116

 3.4.3 Stay in Control 124

3.5 Testing and Risk .. 125

 3.5.1 Introduction to Risk-Based Testing 125

 3.5.2 Risk Management 131

 3.5.3 Risk Analysis 135

 3.5.4 Risk Mitigation 142

Questions..... .. 147

Test Techniques.. 151

4.1 Specification-Based Techniques ... 152

 4.1.1 Equivalence Partitioning and Boundary Value Analysis 152

 4.1.2 Domain Analysis 160

 4.1.3 Decision Tables 166

 4.1.4 Cause-Effect Graph 169

 4.1.5 State Transition Testing 173

R

R

3

4

Contents ix

Book_samlet.indb 5 21/02/08 18:01:26

 4.1.6 Classification Tree Method 179

 4.1.7 Pairwise Testing 186

 4.1.8 Use Case Testing 191

 4.1.9 Syntax Testing 193

4.2 Structure-Based Techniques ... 197

 4.2.1 White-Box Concepts 198

 4.2.2 Statement Testing 199

 4.2.3 Decision/Branch Testing 201

 4.2.4 Condition Testing 202

 4.2.5 Multiple Condition Testing 204

 4.2.6 Condition Determination Testing 205

 4.2.7 LCSAJ (Loop Testing) 206

 4.2.8 Path Testing 209

 4.2.9 Intercomponent Testing 210

4.3 Defect-Based Techniques .. 211

 4.3.1 Taxonomies 211

 4.3.2 Fault Injection and Mutation 213

4.4 Experience-Based Testing Techniques .. 214

 4.4.1 Error Guessing 215

 4.4.2 Checklist-Based 216

 4.4.3 Exploratory Testing 218

 4.4.4 Attacks 221

4.5 Static Analysis ... 222

 4.5.1 Static Analysis of Code 223

 4.5.2 Static Analysis of Architecture 230

4.6 Dynamic Analysis .. 233

 4.6.1 Memory Handling and Memory Leaks 233

 4.6.2 Pointer Handling 234

 4.6.3 Coverage Analysis 234

 4.6.4 Performance Analysis 235

4.7 Choosing Testing Techniques .. 235

 4.7.1 Subsumes Ordering of Techniques 236

 4.7.2 Advice on Choosing Testing Techniques 236

Questions..... .. 237

if condition then
Statement 1

else
Statement 2

Contentsx

Book_samlet.indb 6 21/02/08 18:01:27

Appendix 4A Classification Tree Example ... 241

Testing of Software Characteristics .. 243

5.1 Quality Attributes for Test Analysts ... 244

 5.1.1 Functional Testing 245

 5.1.2 Usability Testing 249

5.2 Quality Attributes for Technical Test Analysts 254

 5.2.1 Technical Testing in General 256

 5.2.2 Technical Security Testing 258

 5.2.3 Reliability Testing 261

 5.2.4 Efficiency Testing 265

 5.2.5 Maintainability Testing 268

 5.2.6 Portability Testing 271

Questions..... .. 273

Reviews (Static Testing) .. 275

6.1 General Principles for Static Testing .. 275

 6.1.1 History of Static Testing 275

 6.1.2 Static Testing Definition 276

 6.1.3 Static Testing Cost/Benefit 278

 6.1.4 Static Testing Generic Process 279

 6.1.5 Roles in Static Testing 281

 6.1.6 Static Testing Type(s) Selection 282

6.2 Static Testing Types ... 284

 6.2.1 Informal Review 284

 6.2.2 Walk-Through 285

 6.2.3 Technical Review 286

 6.2.4 Management Review 288

 6.2.5 Inspection 289

 6.2.6 Audit 300

6.3 Static Testing in the Life Cycle ... 301

6.4 Introducing Static Testing... 303

 6.4.1 Static Testing Implementation Roles 303

 6.4.2 Static Testing Processes 304

No defects
= 100% reliability

Many defects
= x% reliability

No defects
= 100% reliability

Many defects
= x% reliability

Accepted

5

6

Contents xi

Book_samlet.indb 7 21/02/08 18:01:28

 6.4.3 Static Testing Piloting 305

 6.4.4 Static Testing Rollout 305

 6.4.5 Psychological Aspects of Static Testing 306

Questions..... .. 306

Appendix 6A Solution to the Flower Drawing....................................... 309

Incident Management ... 311

7.1 Incident Detection ... 311

 7.1.1 Incident Definition 311

 7.1.2 Incident Causes 312

 7.1.3 Incident Reporting and Tracking 312

7.2 Incident and Defect Life Cycles .. 313

 7.2.1 Incident Recognition 314

 7.2.2 Incident Investigation 315

 7.2.3 Incident Action 317

 7.2.4 Incident Disposition 318

7.3 Incident Fields ... 319

7.4 Metrics and Incident Management .. 319

7.5 Communicating Incidents .. 321

Questions..... .. 322

Appendix 7A Standard Anomaly Classification 324

Appendix 7B Change Control Process .. 327

Standards and Test Improvement Process ... 329

8.1 Standards ... 330

 8.1.1 Standards in General 330

 8.1.2 International Standards 331

 8.1.3 National Standards 332

 8.1.4 Domain-Specific Standards 332

8.2 Test Improvement Process .. 333

 8.2.1 Process Improvement Principles 334

 8.2.2 Process Maturity Models in General 337

 8.2.3 Testing Improvement Models 341

Questions..... .. 357

Recognition
supporting data
classification
impact

Investigation
supporting data
classification
impact

Action
supporting data
classification
impact

Disposition
supporting data
classification
impact

7

8

Contentsxii

Book_samlet.indb 8 21/02/08 18:01:29

Appendix 8A Definition of Levels in the TPI Model 358

Testing Tools and Automation .. 361

9.1 Testing Tool Acquisition .. 362

 9.1.1 Tool or No Tool? 362

 9.1.2 Tool Selection Team 363

 9.1.3 Testing Tool Strategy 363

 9.1.4 Preparation of a Business Case 363

 9.1.5 Identification of Tool Requirements 364

 9.1.6 Buy, Open-Source, or Do-It-Yourself 365

 9.1.7 Preparation of a Shortlist of Candidates 366

 9.1.8 Detailed Evaluation 366

 9.1.9 Performance of Competitive Trials 367

9.2 Testing Tool Introduction and Deployment 367

 9.2.1 Testing Tool Piloting 368

 9.2.2 Testing Tool Rollout 369

 9.2.3 Testing Tool Deployment 369

9.3 Testing Tool Categories .. 370

 9.3.1 Testing Tool Classification 370

 9.3.2 Tools for All Testers 371

 9.3.3 Tools for Test Analysts and Technical Test Analysts 373

 9.3.4 Tools for Technical Test Analysts 380

 9.3.5 Tools for Programmers 382

Questions..... .. 383

Appendix 9A List of Testing Tools .. 385

People Skills .. 389

10.1 Individual Skills .. 389

 10.1.1 Test Roles and Specific Skills 391

 10.1.2 Testing by Other Professionals 392

 10.1.3 Interpersonal Skills 392

10.2 Test Team Dynamics 394

 10.2.1 Team Roles 395

 10.2.2 Forming Testing Teams 397

IT
skills

9

10

Contents xiii

Book_samlet.indb 9 21/02/08 18:01:29

10.3 Fitting Testing in an Organization 398

 10.3.1 Organizational Anchorage 398

 10.3.2 Independence in Testing 399

10.4 Motivation 401

 10.4.1 Maslow’s Pyramid of Needs 402

 10.4.2 Herzberg’s Factors 403

 10.4.3 K. B. Madsen’s Motivation Theory 404

 10.4.4 Testers’ Motivation 405

10.5 Team Communication 405

Questions....... .. 407

Selected Bibliography .. 409

About the Author .. 411

Index .. 413

Contentsxiv

Book_samlet.indb 10 21/02/08 18:01:32

Foreword
Years ago when I approached software development, my own sense of self-
importance and infallibility was such that I did not feel like buying a book
such as this. In those days, software had different constraints and was less
complex than what is currently delivered now.
 Nowadays, with all the interactions, interoperability, and dependencies ex-
pected between programs, the portability and internationalization expected
by the users, among others, make this profession of software developer much
more complex and challenging.
 This challenge gave rise to new profiles such as those of the test manager,
test analyst, and technical test analyst, who together with the development
teams must ensure that developed software fits the expectations of the differ-
ent stakeholders, whether project managers, business analysts, or end users.
 To validate the level of knowledge associated with these software tester
profiles, the ISTQB proposed a tester certification scheme built of two main
levels: foundation and advanced with a syllabus for each. This book provides
additional information to those available in these syllabi.

If I were to start developing or testing software today, I hope that my
sense of self importance would give way before this book, and that I would
give its content more than a glance or two, and seriously ponder the different
aspects explained in its pages.
 As the person responsible for the working party who published the ISTQB
advanced-level syllabus in 2007, I am sure that this book will serve as a training
support and reference for a number of future ISTQB advanced level certified
testers.
 The explanations, examples, and exercises provided in this book will allow
you to understand the intricacies of testing and help you attain the expected
proficiency to claim the ISTQB advanced-level tester certification.

B. Homès
Chair of Advanced Level Working Party

Founder and principal consultant for TESSCO Technologies inc.
Ollioules, France

March 2008

xv

Book_samlet.indb 11 21/02/08 18:01:32

Book_samlet.indb 12 21/02/08 18:01:33

Preface
“Write a test book? Never!” This was my position for many years, when the
thought occurred to me or when colleagues or course delegates suggested it.
I had and still have great respect for all the very good testing books already
out there.

No book, however, seemed to cover the entire syllabus for the ISEB practi-
tioner certification when I took that, nor when I started to train practitioners-
to-be. I therefore wrote small bits of notes for my delegates to illustrate and
expand on the topics in the syllabus. The notes just grew on me and in the end
I had more than 500 pages.

When the new ISTQB advanced level syllabus began to appear I started
to rewrite my notes to fit with that—and the book was born. I have followed
the ISTQB advanced level syllabus closely because I find that the structure is
strong and makes sense, and because the “notes” were intended for my own
training courses based on the syllabus. Such a closely defined job was a chal-
lenge in some places I really had to take my own view on things and shake it
about; sometimes it came out OK, and sometimes I got wiser.

The ISTQB advanced level syllabus is based on some of the best of the ex-
isting testing books. This book does not pretend to be better or truer. No book,
no course, no person can provide the truth about testing. The book is intended
as another voice in the constant dialogue going on between people with an
interest in testing where thoughts and ideas are being exchanged. I hope the
book will work as such, and as an inspiration and an aid to testers wanting to
listen to yet another understanding of the testing subject, so difficult to get
to grips with.

I also hope that it will help the promotion of the ISTQB certification, as I
find this a great opportunity for testers to get a common language and work
together to strengthen the understanding of testing in the entire software
development industry.

A poster has been created to reflect the contents of this book. It is available
at www.deltaaxiom.com/poster. I very much like to make pictures, both on
paper and in my head. One of my aims when I teach is to help the delegates
create a picture of what testing is about. Everybody’s picture is different, but
after having drawn many pictures the images started to come together in the
poster. It therefore shows a little bit of my brain, namely the bit where my
present understanding of testing is.

I suggest you download the poster and use it and the book together: the
poster to see an overview of the elements in testing and the book to go behind
the picture and obtain more substance on the elements.

xvii

Book_samlet.indb 13 21/02/08 18:01:33

And remember:

 Testing is difficult.
 Testing requires overview.
 Testing requires creativity.
 Testing requires systematic work.
 Testing requires imagination.
 Testing requires courage.
 Testing is fun.

Acknowledgments
Many people have contributed to this book. My boss Jørn Johansen gave me
time and permission to write it. My colleagues, especially Carsten Jørgensen,
gave me inspiration and plenty of their time to discuss all types of issues, great
and small, and also contributed directly to the text. My former colleage Claus
Lehmann-Lessél got me started on the poster. Two very professional test-
ladies, Stine Laforce and Patricia Ensworth, reviewed the manuscript, and
they did a fantastic job. My longtime friend Eddy Bøgh Brixen gave me graph-
ic advice, not least regarding the poster, and he drew all the vignettes. Last
but not least, I had the full support of my husband, Finn, and my daughter,
Lærke, throughout the long days and weekends of writing. I am very grateful
to you all.

There is no way I can mention all the people who have taught, inspired,
and helped me during my testing career, be it managers, colleagues, develop-
ers, customers, tutors at courses, and speakers at conferences. Thanks to you
all; I hope you know how much you mean to me!

xviii Preface

Book_samlet.indb 14 21/02/08 18:01:33

A Guide to Advanced Testing

This book is a paradox. It is written for testers who want to
become real advanced testing practitioners, but there is no

way you can become a practitioner just by reading. A guide, how-
ever, can be good for preparing the journey and for help on the
way.

This book is based on the ISTQB Certified Tester, Advanced
Level Syllabus, Version 2007 Beta, and on the ISTQB Glossary
of Terms used in Software Testing Version 1.2, April 2006, and
the extension to the glossary included in the syllabus. ISTQB is
the “International Software Testing Qualification Board,” an in-
dependent organization made up of member boards from more
than 30 countries and regions around the world. See more at
http://www.istqb.org.

The book can be used even if you don’t want to take an ISTQB
advanced level certificate. In fact the main purpose of the book is to
inspire you to be an even better tester than you already are; it is a guide
for already experienced testers on their way to becoming truly
professional testers. According to the Collins Pocket English Diction-
ary, a professional is engaged in and worthy of the standards of an
occupation requiring advanced education!

A professional tester is a person who puts test knowledge
into action in a professional way. He or she must have knowledge
and understanding of the basics of testing, and some experience
in deploying the knowledge in testing practice. An advanced
education goes further than knowledge and understanding and
aims at providing the tester with abilities to analyze complete
and complex test assignments.

 The ISTQB advanced certification is further explained later;
that section can be skipped if you do not intend to be certified.

The basic philosophy of (software) testing is also discussed
below. That section should be, if not read, then at least skimmed,
to brush up on the foundation of testing.

I
INTRODUCTION

Contents

I.1 Reading Guidelines

I.2 Certified Tester,
 Advanced Level

I.3 Software Testing
 Basics

xix

Book_samlet.indb 15 21/02/08 18:01:33

xx A Guide to Advanced Software Testing

Do not forget that testing is not natural science. There is no absolute solution to
how it must be done; in fact there are many different schools and convictions
for the approach to testing. This book represents one, mine in combination with
that expressed by ISTQB. You will find that you agree and disagree as you
read; the important thing is for you to find out what you believe to be the
“right” way.

I.1 Reading Guidelines
This book contains this basic introduction and 10 chapters, each covering a
topic in the syllabus. The 10 chapters are:

1. Basic Aspects of Software Testing;
2. Testing Processes;
3. Test Management;
4. Test Techniques;
5. Testing of Software Characteristics;
6. Reviews (Static Testing);
7. Incident Management
8. Standards and Test Improvement Process;
9. Test Tools and Automation;
10. People Skills.

The chapters are structured in the same way:

 A very short appetizer to the contents of the chapter, including an
 overview of the sections in the chapter;
 The text;
 A list of questions, which may be used for repetition or as basis for
 discussions in a study group.

 Some chapters have appendices with additional information. A number of
vignettes are used in the margin to attract attention to specific information.
These are explained in Appendix IA.

Examples are marked in light gray.

I.2 Certified Tester, Advanced Level
In the words of the ISTQB Certified tester, advanced level syllabus: “The
advanced level certification is aimed at people who have achieved an
advanced point in their careers in software testing. To receive advanced
level certification, candidates must hold the foundation certificate and
satisfy the exam board that they have sufficient practical experience to be
considered advanced level qualified.”

Book_samlet.indb 16 21/02/08 18:01:33

I.2 Certified Tester, Advanced Level xxi

 To pass the exam, candidates must also demonstrate that they have
achieved the learning objectives provided in the syllabus.

I.2.1 This Book in Relation to the Syllabus
This book is based on the ISTQB Certified Tester Advanced Level Syllabus and
the ISTQB Glossary of Terms used in Software Testing Version 1.2, April 2006.
 This book does in no way replace the syllabus in terms of what must be learned and
understood for the certification. Where there are discrepancies between the syllabus
and this book, the syllabus prevails! I cannot guarantee that only the ISTQB terms
and definitions are used, or that any usage of a term is strictly in accordance with
the glossary, though I have taken care.

The structure of the book follows the structure of the syllabus to a very
large extent. A few sections are placed differently and a few sections are left
out, because the descriptions in the syllabus seem comprehensive.

This book, like the syllabus, is monolithic; that is, each topic is covered
comprehensively in one place, even though the individual topics have
different weights for the different paths in the certification scheme. The
syllabus explains in detail what the learning objectives are for each topic for
each of the certification paths. It is up to the reader to figure out which section
to study extensively and which to skim or even skip.

The ISTQB software testing advanced level certification is a demanding
professional education in testing, based on the ISEB/ISTEB software testing
foundation certification.

If we compare the testing education with getting a driver’s license and driving
a car, then the foundation certification is like getting the theoretical part and
base the license on that and a little bit of supervised practice. You have to learn
all the traffic rules by heart, not necessarily understand them, and only be
able to apply them in a limited environment. The advanced driver has driven
a car many time, and in many different situations: in nice weather, in the rain,
and maybe even on an icy surface. The advanced driver has driven different
cars, and perhaps even driven in places where they drive on the “wrong” side
of the road. Maybe the advanced driver would not be able to pass the theoreti-
cal driver's license test again, but he or she drives with a deep understanding
of that foundation every day.

The ISTQB software testing advanced level certification is in fact three
different certifications. You can choose to become:

 Advanced Level Test Management Professional;
 Advanced Level Test Analyst Professional;
 Advanced Level Technical Test Analyst Professional.

Book_samlet.indb 17 21/02/08 18:01:34

• Listen

• Read

• Think

• Try

• Discuss

• Write

The syllabus covers all aspects of the three different certification paths
and explains in great detail what you need to know and be able to do for each
of them. The syllabus also explains how the examination is conducted.
An advanced level certification does not come easy. You have to:

 Listen to the experiences and opinions of other testing professionals,
 Read as many of the books from the syllabus reference list as you can
 manage
 Think about what you have heard and seen and compare it to your
 own experiences: what have I seen, what was similar and what was
 different, and how and why and with what effect
 Use what you learn in your daily work as much as possible
 Discuss what you hear, read, think, experience, and write with your
 colleagues and your boss; maybe try to get a mentor
 Write things down. When we put pen to paper, things take another
 form in our brain, so when you have read and talked about a topic,
 write down what it means to you and how you may apply it. Use
 drawings, tables, and lists to get an overview. Just make it simple;
 you don’t have to write a book.

In doing all this in any mixture, the theory you get from books and courses

will be transformed into active knowledge and practice: You will become a
truly advanced and, it is hoped, also a professional tester.

There are a number of lists of things that you will have to learn by heart.
Isn’t that a wonderful concept: Learn by heart! You don’t have to memorize
things; just see if it is possible for you to remember them. You should do it
because the things you have to memorize are the very cornerstone of your
profession: those things that should be closest to your professional heart.

I.2.2 Ethics for Testers
A certain professional conduct is expected from professional people. This is
also the case for testers. We can be placed in situations where we are faced
with difficult choices and responsibilities.

The following code of ethics for testers is taken directly from the syllabus
and should be known, understood, and followed by all professional testers.

xxii A Guide to Advanced Software Testing

Book_samlet.indb 18 21/02/08 18:01:34

PUBLIC Certified software testers shall act
consistently with the public interest.

CLIENT AND EMPLOYER Certified software testers shall act in a
manner that is in the best interests of their
client and employer, consistent with the
public interest.

PRODUCT Certified software testers shall ensure
that the deliverables they provide (on the
products and systems they test) meet the
highest professional standards possible.

JUDGMENT Certified software testers shall maintain
integrity and independence in their
professional judgment.

MANAGEMENT Certified software test managers and
leaders shall subscribe to and promote an
ethical approach to the management of
software testing.

PROFESSION Certified software testers shall advance
the integrity and reputation of the profes-
sion consistent with the public interest.

COLLEAGUES Certified software testers shall be fair
to and supportive of their colleagues,
and promote cooperation with software
developers.

SELF Certified software testers shall participate
in lifelong learning regarding the practice
of their profession and shall promote an
ethical approach to the practice of the
profession.

I.3 Software Testing Basics
In any profession it is a must that you have a firm understanding of the
basic concepts of the profession. We will therefore briefly review the most
important issues in testing to make sure that the fundamentals are present in
our minds at all times.

I.3.1 Terms and Definitions in Testing
There is no universal set of definitions of test concepts! That is a fact we have
to live with, and part of being an advanced tester is the ability to map one set
of definitions to others.
 This book is based on the ISTQB Glossary of Terms used in Software
Testing Version 1.2, April 2006 and the extension to the glossary included in
the ISTQB Certified Tester Advanced Level Syllabus Version 2007 Beta.

I.3 Software Testing Basics xxiii

Book_samlet.indb 19 21/02/08 18:01:34

I.3.2 Testing Is Multidimensional
The universe of testing is multidimensional. It changes its composition and look
constantly, depending on the circumstances. It is like looking into a kaleido-
scope on a richly faceted picture.

Unfortunately, the different facets that comprise this universe can only be
presented one at a time in a sequential way in a book. Even in a three-dimen-
sional drawing, it would not be possible to capture the complexity of the testing
universe.

It is your task and challenge as an advanced tester to grasp all the facets
one by one and to be able to make different pictures of the testing universe
depending on the situation you find yourself in at any given time. An unlimited
number of different pictures of the testing universe may be made, and no two
pictures will ever be exactly identical.

The testing universe facets include, but are not necessarily limited to,
those listed here (in alphabetical order). Some of them might not mean any-
thing to you at the moment, but at some point in time they all will.

 Coding languages

 Development models

 Development paradigms

 Incidents

 Incident handling

 Maturity models

 Money

 People skills

 People types

 Process improvement

 Product architectures

 Product paradigms

 Product risks

 Quality assurance activities

 Quality factors

 Quality goals

 Resources

 Risk willingness

 Standards

 Testing obstacles

 Testing progress

 Test approaches

 Test basis

 Test effort

 Test levels

 Test objectives

 Test policy

 Test processes

 Test process improvement

 Test project risks

 Test scopes

 Test techniques

 Test tools

 Test types

 Time

xxiv A Guide to Advanced Software Testing

Book_samlet.indb 20 21/02/08 18:01:35

 All the facets are discussed in this book, some in great detail, some just
superficially, none to exhaustion.

Don’t despair. Read and reread the chapters and sections in any order.
Read other books. Try things out. Discuss with colleagues, both testing col-
leagues and others. Figure out what each facet means to you and how the
facets can relate to each other in your world. Train and train again in making
the picture that suits the situation you are in.

I.3.3 Definition of Testing
So what is testing all about? Most of us have an idea of what testing is—
something about finding errors. But further than that the confusion is fairly big.
 Let’s try to seek help in the standards.

IEEE 610 (Software Engineering Terminology): “The process of operating a
system or component under specified conditions, observing or recording the
results, and making an evaluation of some aspect of the system or component.”

IEEE 829 (Test Documentation): “The process of analyzing a software item to
detect the difference between existing and required conditions (that is, bugs)
and to evaluate the features of the software items.”

BS 7925-1 (Software Testing–Vocabulary): “Process of exercising software to
verify that it satisfies requirements and to detect errors.”

ISTQB Glossary of Terms used in Software Testing V 1.0: “The process consist-
ing of all life cycle activities, both static and dynamic, concerned with plan-
ning, preparation and evaluation of software products and related work prod-
ucts to determine that they satisfy specified requirements, to demonstrate
that they are fit for purpose and to detect defects.”

There is one term they all agree on: process. Testing is a process. So what does
that process entail? IEEE 610 and BS 7925-1, respectively, talk about “operat-
ing” and “exercising”; that is, the idea that testing requires the software to run on a
computer. This is what is also called “dynamic testing.” IEEE 829 broadens the idea
to “analyzing,” thus including “static testing.” And ISTQB takes the full step and
includes both “dynamic and static.” Testing is both dynamic and static.

Then what do we do dynamic and static testing on? The object of the testing
in the definitions ranges from “system or component,” “software item,” and
"software” to “software products and related work products.” In line with test-
ing being both dynamic and static, we have to conclude: Testing can be done on
any work product or product (where the difference is that work products are not
delivered to the customer).

I.3 Software Testing Basics xxv

Book_samlet.indb 21 21/02/08 18:01:35

 And last but not least: Why? The reasons given include “observing,” “eval-
uate,” “detect the ... bugs/errors,” “to verify/determine … satisfaction,” “to
demonstrate … fit for purpose.” We shall see later that all this boils down to:
Testing gathers information about the quality of the object under test.
 The quality is the amount of fulfillment of expectations. On one hand we
have some expectations, and on the other hand, we have the product that
should fulfill these expectations. The question is: Does it? We test to be able to
answer that question.

 Talking about quality, how does test relate to quality assurance? IEEE 610
defines: “Quality assurance: A planned and systematic pattern of all actions
necessary to provide adequate confidence that an item or product conforms to
established technical requirements.”
 Is there any difference between testing and quality assurance here? Not
really. At least within the framework of this book, testing and quality
assurance of the work products and the product will be considered as one and
the same thing.

As Lee Copeland puts it:
“Testing is comparing what is to what should be”

and we could add:

and share the information obtained.

I.3.3.1 Necessity of Testing
There should be no need to tell the readers of this book this, but we’ll do it
anyway: It is necessary to test!

Nobody is perfect,
not even testers

=

xxvi A Guide to Advanced Software Testing

Book_samlet.indb 22 21/02/08 18:01:36

“Errare humanum est,” (it is human to err), is imputed to a number of people.
One source quotes a certain Hieronymus (app. 345–419). Cicero is quoted to
have said: “Errare humanum est, ignoscere divinum,” “To err is human, to
forgive divine” (Philippicae orationes).
 Another quote without a source is: “Cuiusvis hominis est errare, nullius
nisi insipientis in errore perseverare,” “Anybody can err, but only the fool
persists in his defect.”
 It seems to be a recognized condition of life that we are not perfect and
hence happen to make mistakes.

Mistakes are not made on purpose!

Human beings are not machines that perform their tasks mechanically step
by step. There are a number of life conditions that cause us to err.
 Most people are able to handle 7 +

– 2 issues at one time. When this limit is
passed, we forget things or mix information. We also tend to neglect or postpone
issues that seem to be too difficult for us to handle. Sometimes we believe or
hope that if we close our eyes to a problem it will somehow go away.
 In our daily work we are distracted and disturbed numerous times. Streams
of thoughts are broken, and important information is unintentionally left out.
 People also seem to have a tendency to get used to things, which in the
beginning seems wrong. Little by little, we internalize it and make the mistake
ourselves; this it is called the “adaptive testing syndrome,” but it also exists
outside testing. For example, this is one of the reasons why our languages
change over time.
 Sometimes we don’t express ourselves clearly, and that can lead to very
dangerous guesswork if we don’t go back to the source and ask for
clarification. Just consider this requirement:

Pardoned not to be shot!
What does it mean?

Pardoned not, to be shot!

Pardoned, not to be shot!

?
?

I.3 Software Testing Basics xxvii

Book_samlet.indb 23 21/02/08 18:01:36

Wrong assumptions, whether they are conscious or not, may also cause
mistakes, and here the worst ones are the unconscious assumptions, so be
very aware of those.

An accounting system was once implemented by a small software house.
After a while it appeared that some invoices had identical numbers. It turned
out that the developer didn’t know that invoice numbers were not to be
reused, even if an invoice had been “deleted” or archived. The accountant
who had written the specification had not mentioned this issue, because “I
thought it was common knowledge.”

I.3.3.2 Handling Failures, Defects, and Mistakes
In a professional software development context, it is not precise enough to
talk about errors as indiscriminately as we do in everyday language.

We therefore operate with three different terms: mistake (or error), defect
(or defect), and failure, as illustrated here.

 What happens is that a mistake, made by a human being, causes a defect
to be placed in a product, for example, in a software module. The defect causes
no harm as long as it is not encountered by anybody, but if it is “hit” during
the use of the product, it will give rise to a failure.

Remember that the product—the test object—can be anything from the first
requirements specification to the final product to be delivered to the customer.
It is important to distinguish between the concepts of “mistake,” “defect,” and “failure.”

This is because they appear for different reasons, as can be seen above, and
because they are to be treated very differently in the organization.

Failure:
Deviation of the

software from its
expected delivery or

service.

Defect:
Manifestation of

an error in software.

Mistake:
Human action that

produces an
incorrect result.

xxviii A Guide to Advanced Software Testing

Book_samlet.indb 24 21/02/08 18:01:36

The job of the tester is to provoke as many failures as possible before the
product reaches the customer.

When the tester sees a failure, he or she must fill out an incident report,
describing what happened, and give this report to whoever is responsible for
deciding what is then going to happen.

An incident report enables the person or the group of people responsible for
the analysis of the defects to find the defects and to correct those
that it is necessary to correct. The actual defect correction is not part of the
testing, but a task for development or maintenance.

 Process improvement uses analysis of incident reports to find areas where
mistakes may be prevented by new ways of working (new processes) or caught
earlier by better quality assurance processes.

A tester is testing the discount calculation in a sales support system. She enters
the item she wants to “buy” and the number of units she wants. The system
shows the price for one unit and calculates the total price. In the case where
the tester “buys” 9 units, the price that the system shows is too high com-
pared to what the tester has calculated beforehand and hence expects. The
tester notes that she has seen a deviation. It turns out that the system cal-
culates a discount when the number of units is equal to or greater than 9.
But the requirement states that a discount shall be calculated if the number
of units is 10 or more. There is a defect in the statement that determines if a
discount shall be calculated or not. It further turns out that the designer hap-
pened to get it wrong when he wrote the detailed design for the requirement
and that this was not discovered during the review of the design.

I.3 Software Testing Basics xxix

Book_samlet.indb 25 21/02/08 18:01:37

Questions
1. Which lists of terms are used in this book?
2. What are the chapters of the book?
3. What is the difference between a foundation and an advanced
 certification?
4. What is it you need to do when you study?
5. What are the eight areas for ethics for testers?
6. Which facets have an influence on testing?
7. How does ISTQB define testing?
8. How does Lee Copeland define testing?
9. Why is testing necessary?
10. What could be causes for mistakes?
11. What is the difference between “mistake,” “defect,” and “failure”?
12. What activity is used to reduce the likelihood of mistakes in
 software development?

xxx A Guide to Advanced Software Testing

Book_samlet.indb 26 21/02/08 18:01:37

Appendix IA Vignettes
The vignettes used in the margins of this book are shown here to make it
easier to refer to them when you are reading the book.

Caution

Definition

Example

Important

Overview

Reference

Remember

Appendix IA xxxi

Book_samlet.indb 27 21/02/08 18:01:38

Book_samlet.indb 28 21/02/08 18:01:38

Testing is not an isolated activity, nor is it a development activity.
Testing is a support activity: meaningless without the devel-

opment processes and not producing anything in its own right:
nothing developed entails nothing to test.

Testing is, however, a very important part of the life cycle of
any product from the initial idea, during development, and in
deployment until the product is taken out of deployment and dis-
posed of.

Testing has it place intertwined with all these activities. Test-
ing must find its place and fill it as well as possible.

1.1 Testing in the Software Life Cycle
The intention of product development is to somehow go from the
vision of a product to the final product.

1
CHAPTER

Contents

1.1 Testing in the Software
 Life Cycle

1.2 Product Paradigms

1.3 Metrics and
 Measurement

Basic Aspects of Software Testing

1

Book_samlet.indb 1 2/19/08 8:12:28 PM

2 Basic Aspects of Software Testing

To do this a development project is usually established and carried out.
The time from the initial idea for a product untill it is delivered is the develop-
ment life cycle.

When the product is delivered, its real life begins. The product is in use
or deployed until it is disposed of. The time from the initial idea for a product
until it is disposed of is called the product life cycle, or software life cycle, if
we focus on software products.

Testing is a necessary process in the development project, and testing is
also necessary during deployment, both as an ongoing monitoring of how the
product is behaving and in the case of maintenance (defect correction and
possibly evolution of the product).

Testing fits into any development model and interfaces with all the other
development processes, such as requirements definition and coding. Testing
also interfaces with the processes we call supporting processes, such as, for
example, project management.

Testing in a development life cycle is broken down into a number of test
levels—for example component testing and system testing. Each test level has
it own characteristics.

1.1.1 Development Models
Everything we do in life seems to follow a few common steps, namely: con-
ceive, design, implement, and test (and possibly subsequent correction and
retest).

The same activities are recognized in software development, though
there are normally called:

Requirements engineering;

Design;

Coding;

Testing (possibly with retesting, and regression testing).

In software development we call the building blocks “stages,” “steps,”
“phases,” “levels,” or “processes.”

The way the development processes are structured is the development
life cycle or the development model. A life cycle model is a specification of
the order of the processes and the transition criteria for progressing from one
process to the next, that is, completion criteria for the current process and
entry criteria for the next.

Software development models provide guidance on the order in which the
major processes in a project should be carried out, and define the conditions
for progressing to the next process. Many software projects have experienced
problems because they pursued their development without proper regard for
the process and transition criteria.

R D C T
Building blocks

2

Book_samlet.indb 2 2/19/08 8:12:28 PM

1.1 Testing in the Software Life Cycle 3

The reason for using a software development model is to produce better
quality software faster. That goal is equal for all models. Using any model is bet-
ter than not using a model.

A number of software development models have been deployed through-
out the industry over the years. They are usually grouped according to one of
the following concepts:

Sequential;

Iterative;

Incremental.

The building blocks—the processes—are the same; it is only a matter of
their length and the frequency with which they are repeated.

The sequential model is characterized by including no repetition other
than perhaps feedback to the preceding phase. This makeup is used in order
to avoid expensive rework.

1.1.1.1 Sequential Models
The assumptions for sequential models are:

The customer knows what he or she wants.

The requirements are frozen (changes are exceptions).

Phase reviews are used as control and feedback points.

The characteristics of a successful sequential development project are:

Stable requirements;

Stable environments;

Focus on the big picture;

One, monolithic delivery.

Historically the first type of sequential model was the waterfall model. A
pure waterfall model consists of the building blocks ordered in one sequence
with testing in the end.

Book_samlet.indb 3 2/19/08 8:12:29 PM

4 Basic Aspects of Software Testing

The goals of the waterfall model are achieved by enforcing fully elabo-
rated documents as phase completion criteria and formal approval of these
(signatures) as entry criteria for the next.

The V-model is an expansion of the pure waterfall model introducing more
test levels, and the concept of testing not only being performed at the end of
the development life cycle, even though it looks like it.

The V-model describes a course where the left side of the V reflects the
processes to be performed in order to produce the pieces that make up the
physical product, for example, the software code. The processes on the right
side of the V are test levels to ensure that we get what we have specified as
the product is assembled.

The pure V-model may lead you to believe that you develop first (the left
side) and then test (the right side), but that is not how it is supposed to
work.

A W-model has been developed to show that the test work, that is, the
production of testing work products, starts as soon as the basis for the testing
has been produced. Testing includes early planning and specification and test
execution when the objects to test are ready. The idea in the V-model and the
W-model is the same; they are just drawn differently.

When working like this, we describe what the product must do and how
(in the requirements and the design), and at the same time we describe how
we are going to test it (the test plan and the specification). This means that
we are starting our testing at the earliest possible time.

The planning and specification of the test against the requirements
should, for example, start as soon as the requirements have reached a reason-
able state.

4

Book_samlet.indb 4 2/19/08 8:12:29 PM

1.1 Testing in the Software Life Cycle 5

A W-model-like development model provides a number of advantages:

More time to plan and specify the test

Extra test-related review of documents and code

More time to set up the test environment(s)

Better chance of being ready for test execution as soon as something is

 ready to test

For some classes of software (e.g., safety critical systems, or fixed-price
contracts), a W-model is the most appropriate.

1.1.1.2 Iterative and Incremental Models
In iterative and incremental models the strategy is that frequent changes
should and will happen during development. To cater for this the basic pro-
cesses are repeated in shorter circles, iterations. These models can be seen as
a number of mini W-models; testing is and must be incorporated in every
iteration within the development life cycle.

This is how we could illustrate an iterative or incremental development
model.

The goals of an iterative model are achieved through various prototypes
or subproducts. These are developed and validated in the iterations. At the
end of each iteration an operational (sub)product is produced, and hence the
product is expanding in each iteration. The direction of the evolution of the
product is determined by the experiences with each (sub)product.

Note that the difference between the two model types discussed here is:

In iterative development the product is not released to the customer
 until all the planned iterations have been completed.

In incremental development a (sub)product is released to the customer
 after each iteration.

The assumptions for an iterative and incremental model are:

The customer cannot express exactly what he or she wants.

The requirements will change.

Reviews are done continuously for control and feedback.

CR

DD

IC
TT

TTCR

DD

IC
TT

TT CR

DD

IC
TT

TTCR

DD

IC
TT

TT CR

DD

IC
TT

TTCR

DD

IC
TT

TT

Book_samlet.indb 5 2/19/08 8:12:30 PM

6 Basic Aspects of Software Testing

The characteristics of a successful project following such a model are:

Fast and continuous customer feedback;

Floating targets for the product;

Focus on the most important features;

Frequent releases.

The iterative/incremental model matches situations in which the customers
say: “I can’t tell you what I want, but I’ll know it when I see it”—the last part
of the sentence often expressed as “IKIWISI.”

These models are suited for a class of applications where there is a close
and direct contact with the end user, and where requirements can only be
established through actual operational experience.

A number of more specific iterative models are defined. Among these the
most commonly used are the RAD model and the Spiral model.

The RAD model (Rapid Application Development) is named so because it is
driven by the need for rapid reactions to changes in the market. James Martin,
consultant and author, called the “guru of the information age”, was the first
to define this model. Since then the term RAD has more or less become a generic
term for many different types of iterative models.

The original RAD model is based on development in timeboxes in few—
usually three—iterations on the basis of fundamental understanding of the
goal achieved before the iterations start. Each iteration basically follows a
waterfall model.

another iteration

Iterative Design and Build

Develop
Iteration N

Evaluate
Iteration N

Review, Rebuild
and Implement

Implementation
Review

10 days

20 days

100 days

20 days

Project
Set Up

Preliminary
Interviews and
RAD Workshop

another iteration

Iterative Design and Build

Develop
Iteration N

Evaluate
Iteration N

Review, Rebuild,
and Implement

Implementation
Review

10 days

20 days

100 days

20 days

Project
Set Up

Preliminary
Interviews and
RAD Workshop

6

Book_samlet.indb 6 2/19/08 8:12:31 PM

1.1 Testing in the Software Life Cycle 7

When the last iteration is finished, the product is finalized and imple-
mented as a proper working product to be delivered to the customer.

Barry Boehm, TRW Professor of Software Engineering at University of
Southern California, has defined a so-called Spiral Model. This model aims at
accommodating both the waterfall and the iterative model. The model con-
sists of a set of full cycles of development, which successively refines the
knowledge about the future product. Each cycle is risk driven and uses proto-
types and simulations to evaluate alternatives and resolve risks while produc-
ing work products. Each cycle concludes with reviews and approvals of fully
elaborated documents before the next cycle is initiated.

The last cycle, when all risks have been uncovered and the requirements,
product design, and detailed design approved, consists of a conventional wa-
terfall development of the product.

In recent years a number of incremental models, called evolutionary or agile
development models, have appeared. In these models the emphasis is placed on
values and principles, as described in the “Manifesto of Software Develop-
ment.” These are:

Individuals and interactions are valued over processes and tools

Working software is valued over comprehensive documentation

Customer collaboration is valued over contract negotiation

Responding to change is valued over following a plan

One popular example of these models is the eXtreme Programming model,
(XP). In XP one of the principles is that the tests for the product are developed
first; the development is test-driven.

The development is carried out in a loosely structured small-team style.
The objective is to get small teams (3–8 persons) to work together to build
products quickly while still allowing individual programmers and teams free-
dom to evolve their designs and operate nearly autonomously.

These small teams evolve features and whole products incrementally
while introducing new concepts and technologies along the way. However,
because developers are free to innovate as they go along, they must synchro-
nize frequently so product components all work together.

Testing is perhaps even more important in iterative and incremental de-
velopment than in sequential development. The product is constantly evolved
and extensive regression testing of what has previously been agreed and ac-
cepted is imperative in every iteration.

Book_samlet.indb 7 2/19/08 8:12:31 PM

8 Basic Aspects of Software Testing

1.1.2 Dynamic Test Levels
In the V-model, and hence in basically all development, each development
process has a corresponding dynamic test level as shown here.

The V-model used here includes the following dynamic test levels:

Acceptance testing—based on and testing the fulfillment of the user

 requirements;
System testing—based on and testing the fulfillment of the (software)

system requirements;

Component integration testing—based on and testing the implementation

 of the architectural design;
Component testing—based on and testing the implementation of the

 detailed design.

Note that coding does not have a corresponding test level; it is not a speci-
fication phase, where expectations are expressed, but actual manufacturing!
The code becomes the test object in the dynamic test levels.

There is no standard V-model. The V-model is a principle, not a fixed mod-
el. Each organization will have to define its own so that it fits with the nature
of the products and the organization. The models can have different make-
ups, that is there may be more or less specification phases on the left side and
hence testing levels on the right side, and/or the phases and levels may be
named differently in different organizations.

Detailed
design

Coding

Product
design

System
requirements

Architectural
design

User
requirements

8

Book_samlet.indb 8 2/19/08 8:12:32 PM

1.1 Testing in the Software Life Cycle 9

In cases where the final product is part of or in itself a complex product it
is necessary to consider more integration test levels.

In the case of a system of systems development project, described in Sec-
tion 1.2.1, we will need a system integration test level.

Sometimes the product we are developing consists of a number
of different types of systems, like for example:

Software

Hardware

Network

Data

Services

In such cases there will be product design specification phases to dis-
tribute the requirements on the different systems in the beginning of the
development life cycle and we will therefore need more or more integration
test levels, such as, for example, hardware-software system integration and
software-data system integration.

Note: the puzzle does NOT indicate possible interfaces between systems,
only the fact that a product may be made up of different types of systems.

We could also be producing a product that is going to interface with
system(s) the customer already has running. This will require a customer
product integration test level.

No matter how many test levels we have, each test level is different from
the others, especially in terms of goals and scope.

The organizational management must provide test strategies specific to
each of the levels for the project types in the organization in which the test-
ing is anchored. The contents of a test level strategy are discussed in Section
3.2.2.

Based on this the test responsible must produce test plans specific for
each test level for a specific project. The contents of a test plan are discussed
in Section 3.2.3.

The specific test plans for the test levels for a specific project should out-
line the differences between the test levels based on the goals and scope for
each.

The fundamental test process is applicable for all the test levels. The test
process is described in detail in Chapter 2.

The dynamic test levels in the V-model used here are discussed next.

1.1.2.1 Component Testing
Component testing is the last test level where work, that is, planning, can
start, the first where test execution can start, and therefore also the first to
be finished.

Book_samlet.indb 9 2/19/08 8:12:33 PM

10 Basic Aspects of Software Testing

The goal is to find defects in the implementation of each component ac-
cording to the detailed design of the component.

The test object is hence individual components in isolation, and the basis
documentation is the detailed design, and sometimes also other documenta-
tion like the requirements specification.

It is not always easy to agree on what a component is. A component could be
what is contained in a compilable file, a subroutine, a class, or … the pos-
sibilities are legion. The important thing in an organization is to define “a
component”—it is less important what a component is defined as.

The scope for one component test is the individual component and the
full scope of the component testing could be all components specified in the
design, though sometimes only the most critical components may be selected
for component testing.

An overall component test plan should be produced specifying the order in
which the testing of the components is to take place. If this is done suffi-
ciently early in the development, we as testers may be able to influence the
development order to get the most critical components ready to test first. We
also need to consider the subsequent component integration testing, and plan
for components with critical interfaces to be tested first. For each component a
very short plan (who, when, where, and completion criteria) and a test speci-
fication should be produced.

The assignment of the responsibility for the component testing depends
on the level of independence we need. The lowest level of independence is
where the manufacturer—here the developer—tests his or her own product.
This often happens in component testing. The next level of independence is
where a colleague tests his or her colleague’s product. This is advisable for
component testing. The level of independence to use is guided by the risk re-
lated to the product. Risk management is discussed in Section 3.5.

The techniques to use in component testing are functional (black-box)
techniques and structural (white-box) techniques. Most often tests are first
designed using functional techniques. The coverage is measured and more
tests can be designed using structural techniques if the coverage is not suf-
ficient to meet the completion criteria.

The code must never be used as the basis documentation from which to derive the
expected results.

Nonfunctional requirements or characteristics, such as memory usage,

Component Input Outcome

10

Book_samlet.indb 10 2/19/08 8:12:33 PM

1.1 Testing in the Software Life Cycle 11

defect handling, and maintainability may also be tested at the component
testing level.

To isolate a component, it is necessary to have a driver to be able to ex-
ecute the component. It is also usually necessary to have a stub or a simulator
to mimic or simulate other components that interface with the component
under test. Test stubs are sometimes referred to as test harness.

The needs for test drivers and stubs
must be specified as part of the specifica-
tion of the test environment. Any needed
driver and stubs must, of course, be ready
before each individual component testing
can start.

Many tools support component testing.
Some are language-specific and can act as
drivers and stubs to facilitate the isolation
of the component under test. Tools are dis-
cussed in Chapter 9.

Component test execution should start when the component has been
deemed ready by the developer, that is when it fulfilles the entry criteria. The
least we require before the test execution can start is that the component can
compile. It could be a very good idea to require that a static test and/or static
analysis has been performed and approved on the code as entry criteria for
the component test execution.

Measures of time spent on the testing activities, on defects found and
corrected, and on obtained coverage should be collected. This is sometimes
difficult because component testing is often performed as an integrated de-
velopment/testing/debugging activity with no registration of defects and very
little if any reporting. This is a shame because it deprives the organization of
valuable information about which kinds of defects are found and hence the
possibility for introducing relevant process improvement.

The component testing for each individual component must stop when
the completion criteria specified in the plan have been met. For each compo-
nent a very short summary report should be produced.

A summary report for the collection of components being tested should be
produced when the testing has been completed for the last component.

Any test procedures should be kept, because they can be very useful for later
confirmation testing and regression testing. Drivers and stubs should be kept
for the same reason, and because they can be useful during integration test-
ing as well.

The goals of integration testing are to find defects in the interfaces and
invariants between interacting entities that interact in a system or a prod-
uct. Invariants are substates that should be unchanged by the interaction
between two entities.

Component
under
test

Test
driver

Test stub 2Test stub 1

Book_samlet.indb 11 2/19/08 8:12:34 PM

12 Basic Aspects of Software Testing

The objective is not to find defects inside the entities being integrated—the
assumption being that these have already been found during previous testing.

The entities to integrate may be components as defined in the architectur-
al design or different systems as defined in the product design. The principles
for integration testing are the same no matter what we are integrating.

1.1.2.2 Integration Testing

For the collection of interfaces to test an overall integration test plan
should be produced specifying, among other things, the order in which this
testing is to take place. There are four different strategies for the testing order
in integration testing:

 Top down;
 Bottom up;

 Functional integration;

 Big-bang.

In top-down integration the in-
terfaces in the top layer in the design
hierarchy are tested first, followed
by each layer going downwards. The
main program serves as the driver.

This way we quickly get a
“shell” created. The drawback is
that we (often) need a large number
of stubs.

Component 1Input

Outcome

Component 2

Output 1 = Input 2

C2

C4 C6 C5 C3

C1

D

12

Book_samlet.indb 12 2/19/08 8:12:34 PM

1.1 Testing in the Software Life Cycle 13

C1 C3 C2

S S S

S S

C3

C-main
In bottom-up integration the inter-

faces in the lowest level are tested first.
Here higher components are replaced
with drivers, so we may need many driv-
ers. This integration strategy enables early
integration with hardware, where this is
relevant.

In functional integration we integrate
by functionality area; this is a sort of verti-
cally divided top-down strategy. We quick-
ly get the possibility of having functional
areas available.

In big-bang integration we integrate most or everything in one go. At first
glance it seems like this strategy reduces the test effort, but it does not—on
the contrary. It is impossible to get proper coverage when testing the inter-
faces in a big-bang integration, and it is very difficult to find any defects in
the interfaces, like looking for a needle in a haystack. Both top-down and
bottom-up integration often end up as big-bang, even if this was not the ini-
tial intention.

For each interface a very short plan (who, when, where, and completion cri-
teria) and a test specification should be produced. Often one of the producers
of the entities to integrate has the responsibility for that integration testing,
though both should be present.

Both the formality and the level of independence is higher for system in-
tegration testing than for component integration, but these issues should not
be ignored for component integration testing.

The techniques to use must primarily be selected among the structural
techniques, depending on the completion criteria defined in the plan. Non-
functional requirements or characteristics, such as performance, may also be
tested at the integration testing level.

The necessary drivers or stubs must be specified as part of the environ-
ment and developed before the integration testing can start. Often stubs from
a previous test level, for example, component testing, can be reused.

The execution of the integration testing follows the completion of the test-
ing of the entities to integrate. As soon as two interacting entities are tested,
their integration test can be executed. There is no need to wait for all entities
to be tested individually before the integration test execution can begin.

Measures of time spent on the testing, on defects found and corrected,
and on coverage should be collected.

The integration testing for each individual interface must stop when the
completion criteria specified in the plan have been met. A very short test re-
port should be produced for each interface being tested. We must keep on
integrating and testing the interfaces and the invariants until all the entities

Book_samlet.indb 13 2/19/08 8:12:35 PM

14 Basic Aspects of Software Testing

have been integrated and the overall completion criteria defined in the inte-
gration test plan have been met.

A summary report for the collection of interfaces being tested should be
produced when the testing has been completed for the last interface.

1.1.2.3 System Testing
The goal of system testing is to find defects in features of the system com-
pared to the way it has been defined in the software system requirements. The
test object is the fully integrated system.

The better the component testing and the component integration test-
ing has been performed prior to the system testing, the more effective is the
system testing. All too often system testing is impeded by poor or missing
component and component integration testing.

A comprehensive system test plan and system test specification must be
produced.

The system test specification is based on the system requirements speci-
fication. This is where all the expectations, both the functional and the non-
functional should be expressed. The functional requirements express what the
system shall be able to do—the functionality of the system. The non-function-
al requirements express how the functionality presents itself and behaves. In
principle the system testing of the two types of requirements is identical. We
test to get information about the fulfillment of the requirements.

The techniques to use will most often be selected among the functional
techniques, possibly supplemented with experience-based techniques (ex-
ploratory testing, for example), depending on the completion criteria defined
in the plan. Experience-based test techniques should never be the only techniques used
in the system testing.

The execution of system test follows the completion of the entire compo-
nent integration testing. It is a good idea to also require that a static test

Outcome

Input

14

Book_samlet.indb 14 2/19/08 8:12:35 PM

1.1 Testing in the Software Life Cycle 15

has been performed on the requirements specification and on the system test
specification before execution starts.

Many tools support system testing. Capture/replay tools and test manage-
ment tools are especially useful to support the system testing.

Measures of time spent on the testing, on faults found and corrected, and
on coverage should be collected. The system testing must stop when the com-
pletion criteria specified in the plan have been met.

A system test report should be produced when the system testing has
been completed.

1.1.2.4 Acceptance Testing
The acceptance testing is the queen’s inspection of the guard. The goal of this
test level is not, like for all the other ones, to find defects by getting the prod-
uct to fail. At the acceptance test level the product is expected to be working
and it is presented for acceptance.

The customer and/or end users must be involved in the acceptance testing. In
some cases they have the full responsibility for this testing; in other cases they
just witness the performance.

In the acceptance testing the test object is the entire product. That could
include:

Business processes in connection with the new system;

Manual operations;

Forms, reports, and so forth;

Document flow;

Use cases and/or scenarios.

The techniques are usually mostly experience-based, where the future us-
ers apply their domain knowledge and (hopefully) testing skills to the valida-
tion of the product. Extracts of the system test specification are sometimes
used as part of the acceptance test specification.

An extra benefit of having representatives of the users involved in the
acceptance testing is that it gives these users a detailed understanding of
the new system—it can help create ambassadors for the product when it is
brought into production.

There may be a number of acceptance test types, namely:

Contract acceptance test;

Alpha test;

Beta test.

Book_samlet.indb 15 2/19/08 8:12:36 PM

16 Basic Aspects of Software Testing

The contract acceptance test may also be called factory acceptance test.
This test must be completed before the product may leave the supplier; the
product has to be accepted by the customer. It requires that clear acceptance
criteria have been defined in the contract. A thorough registration of the re-
sults is necessary as evidence of what the customer acceptance is based on.

An alpha test is usage of the product by representative users at the devel-
opment site, but reflecting what the real usage will be like. Developers must
not be present, but extended support must be provided. The alpha test is not
used particularly often since it can be very expensive to establish a “real” en-
vironment. The benefits rarely match the cost.

A beta test is usage of the product by selected (or voluntary) customers at
the customer site. The product is used as it will be in production. The actual
conditions determine the contents of the test. Also here extended support of
the users is necessary. Beta tests preferably run over a longer period of time.
Beta tests are much used for off-the-shelf products—the customers get the
product early (and possibly cheaper) in return for accepting a certain amount
of immaturity and the responsibility for reporting all incidents.

1.1.3 Supporting Processes
No matter how the development model is structured there will always be
a number of supporting activities, or supporting processes, for the develop-
ment.

The primary supporting processes are:

Quality assurance;

Project management;

Configuration management.

These processes are performed during the entire course of the develop-
ment and support the development from idea to product.

Other supporting processes may be:

Technical writing (i.e., production of technical documentation);

Technical support (i.e., support of environment including tools).

The supporting processes all interface with the test process.
Testing is a product quality assurance activity and hence actually part of the

supporting processes. This is in line with the fact that testing is meaningless
without the development processes and not producing anything in its own
right: nothing developed entails nothing to test.

The test material, however, is itself subject to quality assurance or testing,
so testing is recursive and interfaces with itself. Testing also interfaces with

16

Book_samlet.indb 16 2/19/08 8:12:36 PM

1.1 Testing in the Software Life Cycle 17

project management and configuration management as discussed in detail in
the following.

Testing also interfaces with technical writing. The documentation being
written is an integrated part of the final product to be delivered and must
therefore also be subject to quality assurance (i.e., to static testing).

When the product—or an increment—is deployed, it transfers to the
maintenance phase. In this phase corrections and possibly new features will
be delivered at defined intervals, and testing plays an important part here.

1.1.3.1 Product Quality Assurance
It is not possible to test quality into a product when the development is close
to being finished. The quality assurance activities must start early and become
an integrated part of the entire development project and the mindset of all
stakeholders.

Quality assurance comprises four activities:

Definition of quality criteria

Validation

Verification

Quality reporting

First of all, the Quality criteria must be defined. These criteria are the ex-
pression of the quality level that must be reached or an expression of “what is
sufficiently good.” These criteria can be very different from product to prod-
uct. They depend on the business needs and the product type. Different qual-
ity criteria will be set for a product that will just be thrown away when it is
not working than for a product that is expected to work for many years with
a great risk of serious consequences if it does not work.

There are two quality assurance activities for checking if the quality crite-
ria have been met by the object under testing, namely:

Validation;

Verification.

They have different goals and different techniques. The object to test is
delivered for validation and verification from the applicable development
process.

Note that the validation is
not necessarily performed
before the verification; in
many organizations it is
the other way around, or
in parallel.

Book_samlet.indb 17 2/19/08 8:12:37 PM

18 Basic Aspects of Software Testing

Validation is the assessment of the correctness of the product (the object)
in relation to the users’ needs and requirements.

You could also say that validation answers the question: ”Are we building
the correct product?”

Validation must determine if the customer’s needs and requirements are
correctly captured and correctly expressed and understood. We must also de-
termine if what is delivered reflects these needs and requirements.

When the requirements have been agreed upon and approved, we must
ensure that during the entire development life cycle:

Nothing has been forgotten.

Nothing has been added.

It is obvious that if something is forgotten, the correct product has not
been delivered. Is does, however, happen all too often, that requirements are
overlooked somewhere in the development process. This costs money, time,
and credibility.

On the surface it is perhaps not so bad if something has been added. But
it does cost money and affect the project plan, when a developer—probably in
all goodwill—adds some functionality, which he or she imagines would be a
benefit for the end user.

What is worse is that the extra functionality will probably never be tested in the
system and acceptance test, simply because the testers don’t know anything
about its existence. This means that the product is sent out to the customers
with some untested functionality and this will lie as a mine under the surface
of the product. Maybe it will never be hit, or maybe it will be hit, and in that
case the consequences are unforeseeable.

The possibility that the extra functionality will never be hit is, however,
rather high, since the end user will probably not know about it anyway.

Validation during the development process is performed by analysis of
trace information. If requirements are traced to design and code it is an easy
task to find out if some requirements are not fulfilled, or if some design or
code is not based on requirements.

The ultimate validation is the user acceptance test, where the users test
that the original requirements are implemented and that the product fulfills
its purpose.

Verification, the other quality assurance activity, is the assessment of
whether the object fulfills the specified requirements.

Verification answers the question: “Are we building the product correctly?”

18

Book_samlet.indb 18 2/19/08 8:12:37 PM

1.1 Testing in the Software Life Cycle 19

The difference between validation and verification can be illustrated like
this:

Validation confirms that a required calculation of discount has been designed
and coded in the product.
Verification confirms that the implemented algorithm calculates the discount
as it is supposed to in all details.

A number of techniques exist for verification. The ones to choose depend
on the test object.

In the early phases the test object is usually a document, for example in
the form of:

Plans;

Requirements specification;

Design;

Test specifications;

Code.

The verification techniques for these are the static test techniques dis-
cussed in Chapter 6:

Inspection;

Review (informal, peer, technical, management);

Walk-through.

Once some code has been produced, we can use static analysis on the code
as a verification technique. This is not executing the code, but verifying that
it is written according to coding standards and that is does not have obvious
data flow faults. Finally, dynamic testing where the test object is executable
software can be used.

We can also use dynamic analysis, especially during component testing.
This technique reveals faults that are otherwise very difficult to identify. Dy-
namic analysis is described in Section 4.6.

Book_samlet.indb 19 2/19/08 8:12:37 PM

20 Basic Aspects of Software Testing

A little memory hint:

Quality assurance reports on the findings and results should be produced.
If the test object is not found to live up to the quality criteria, the object

is returned to development for correction. At the same time incident reports
should be filled in and given to the right authority.

Once the test object has passed the validation and verification, it should
be placed under configuration management.

1.1.3.2 Project Management
It is obviously important that the development process and the supporting
processes are managed and controlled during the entire project. Project man-
agement is the supporting process that takes care of this, from the first idea
to the release.

The most important activities in project management are:

Risk analysis;

Estimation;

Scheduling;

Monitoring and control;

Communication.

Validation

Correct

Verification

Correctly

a comes before e
t comes before y

20

Book_samlet.indb 20 2/19/08 8:12:38 PM

1.1 Testing in the Software Life Cycle 21

Test management is subordinated to project management.
The estimation, risk analysis, and scheduling of the test activities will ei-

ther have to be done in cooperation with the project management or by the
test manager and consolidated with the overall project planning. The results
of the monitoring and control of the test activities will also have to be coordi-
nated with the project management activities.

The project management activities will not be discussed further here.
The corresponding test management activities are described in detail in

Chapter 3.

1.1.3.3 Configuration Management
Configuration management is another supporting process with which testing
interacts. The purpose of configuration management is to establish and main-
tain integrity of work products and product.

Configuration management can be defined as:

Unique identification;

Controlled storage;

Change management (recognition, investigation, action, and

 disposition);
Status reporting.

for selected

Work products;

Product components;

Products.

during the entire life time of the product.
An object under configuration management is called a configuration item.

The purpose of identification is to uniquely identify each configuration item
and to specify its relations to the outside world and to other configuration
items. Identification is one of the cornerstones of configuration management,
as it is impossible to control something for which you don’t know the iden-
tity.

Each organization must define the conventions for unique identification
of the configuration items.

Book_samlet.indb 21 2/19/08 8:12:48 PM

22 Basic Aspects of Software Testing

Test cases
10.3.1.6 (80) Test for correct bank identity number 1.A
The identification encompasses:
Current section number in document: 10.3.1.6
Running unique number: 80
Version of test case: 1.A

The purpose of storage is to ensure that configuration items don’t disap-
pear or are damaged. It must also be possible to find the items at any time and
have them delivered in the condition in which we expect to find them.

Storage is something physical. Items that are stored are physically present
at a specific place. This place is often called the library, or the controlled li-
brary.

Configuration items are released from storage to be used as the basis for
further work. Usage is all imaginable deployment of configuration items without these
being changed, not just usage of the final product by the final users.

Usage may for instance be a review, if a document is placed under con-
figuration management in the form of a draft and subsequently has to be
reviewed.

It may be testing of larger or minor parts of the system, integration of a
subcomponent into a larger component, or proper operation or sale of a fin-
ished product.

Configuration items released from storage must not be changed, ever! But
new versions may be issued as the result of change control.

The purpose of change management or change control is to be fully in control
of all change requests for a product and of all implemented changes. Any
change should be traced to the configuration item where the change has been
implemented.

The initiation of change control is the occurrence of an incident. Incident
management is discussed in Chapter 7.

The purpose of status reporting is to make available the information neces-
sary for effective management of the development, testing, and maintenance
of a product, in a useful and readable way.

Configuration management can be a well of information.
A few words about the concept of a configuration item are needed here. In

principle everything may be placed under configuration management. The
following list shows what objects may become configuration items, with the
emphasis on the test ware.

Test material: Test specifications, test data(base), drivers, and stubs

Environments: Operating systems, tools, compilers, and linkers

22

Book_samlet.indb 22 2/19/08 8:12:49 PM

1.2 Product Paradigms 23

Technical documentation: Requirements, design, and technical notes

Code: Source code, header files, include files and system libraries

Project documentation: User manuals, build scripts, data, event

 registrations, installation procedures, and plans
Administrative documents: Letters, contracts, process description, sales

 material, templates, and standards
Hardware: Cables, mainframe, PC, workstation, network, storage, and

 peripherals

1.1.3.4 Technical Writing
Technical writing is a support process much used in the United Kingdom.
Other European countries do not use technical writers that much—here the
developers, testers, and the rest of the project team are left to their own devices.

Technical writers are people with special writing skills and education.
They assist other staff members when difficult issues need to be made clear to
the intended audience in writing.

We as testers interface with technical writers in two ways:

We subject their work to static tests.

We use their work in our testing.

We can of course also use their skills as writers, but that does not happen
very often. Testers usually write for other testers and for a technical audience.

1.2 Product Paradigms
The use of computers to assist people in performing tasks has developed
dramatically since the first huge (in physical size) computers were invented
around the middle of the last century. The first computers were about the size
of a family home and you could only interact with them via punch cards or
tape and printed output. Those were the days.

Today we as testers may have to cope with a number of different product
types or product paradigms, and with different development paradigms and
coding languages. Not all of us encounter all of them, but it is worth knowing
a little bit about the challenges they each pose for us.

We always need to be aware of the product and development paradigm
used for the (testing) projects we are involved in. We must tailor our test ap-
proach and detailed test processes to the circumstances and be prepared to
tackle any specific obstacles caused by these as early as possible.

A few significant product paradigms are discussed here.

Book_samlet.indb 23 2/19/08 8:12:49 PM

24 Basic Aspects of Software Testing

1.2.1 Systems of Systems
A system of systems is the concept of integrating existing systems into a
single information system with only limited new development. The concept
was first formulated by the American Admiral Owens in his book Lifting the
Fog of War. The concept was primarily used for military systems but is spread-
ing more and more to civilian systems as well.

The idea is to use modern network technologies to exploit the information
spread out in a number of systems by combining and analyzing it and using
the results in the same or other systems to make these even more powerful.

A tiny example of a system of systems is a sprinkling system at a golf course.
The gardener can set the sprinkling rate for a week at the time. Using a net-
work connection this system is linked to a system at the meteorological in-
stitute where hours of sunshine, average temperatures, and rainfall are col-
lected. This information is sent to a small new system, which calculates the
needed sprinkling rate on a daily basis and feeds this into the sprinkling sys-
tem automatically. The gardener’s time, water, the occasional flooding, and
the occasional drying out of the green is saved.

Systems of systems are complicated in nature. The final system is usually
large and complex as each of the individual systems may be. Each of the indi-
vidual systems may in itself consist of a number of different subsystems, such
as software, hardware, network, documentation, data, data repository sys-
tems, license agreements, services (e.g., courses and upgrades), and descrip-
tions of manual processes. Few modern systems are pure software products,
though they do exist.

Even if the individual systems are not developed from scratch these sys-
tems pose high demands on supporting the supporting processes, especially
project management, but also configuration management and product quality
assurance. In the cases where some or all of the individual systems are being
developed as part of the construction of a system of systems this poses even
higher demands in terms of communication and coordination.

From a testing point of view, there are at least three important aspects to
take into account when working with systems of systems:

System testing of the individual systems

Integration testing of systems

Regression testing of systems and integration

24

Book_samlet.indb 24 2/19/08 8:12:49 PM

1.2 Product Paradigms 25

A system of systems is only as strong as the weakest link, and the com-
pletion criteria for the system testing of each individual system must reflect
the quality expectations toward the complete system of systems. The system
testing of each of the individual systems is either performed as part of the
project, or assurance of its performance must be produced, for example in the
form of test reports from the producer.

Systems of systems vary significantly in complexity and may be designed
in hierarchies of different depths, ranging from a two-layer system where
the final system of systems is composed of a number of systems of the same
“rank” to many-layered (system of (systems of (systems of systems))). Inte-
gration of the systems must be planned and executed according to the overall
architecture, observing the integration testing aspects discussed in Section
1.1.2.

It is inevitable that defects will be found during system and integration
testing of systems of systems, and significant iterations of defect correction,
confirmation testing, and not least regression testing must be anticipated and
planned for. Strict defect handling is necessary to keep this from getting out of control,
resulting, for example, in endless correction and recorrection circles.

Systems of systems may well contain systems of types where special care
and considerations need to be made for testing. Examples may be:

Safety-critical systems

Large mainframe systems

Client-server systems

Web-based systems

PC-based systems

Web-based systems

Embedded systems

Real-time systems

Object-oriented development

1.2.2 Safety-Critical Systems
Any system presents some risk to its owners, users, and environment. Some
present more than others, and those that present the most risk are what we
call safety-critical systems.

The risk is a threat to something valuable. All systems either have some-
thing of value, which may be jeopardized, inside them, or their usage may
jeopardize some value outside them. A system should be built to protect the
values both from the result of ordinary use of the system and from the result
of malicious attacks of various kinds.

Book_samlet.indb 25 2/19/08 8:12:49 PM

26 Basic Aspects of Software Testing

A typical categorization of values looks at values concerning:

Safety

Economy

Security

Environment

Many regulatory standards address how to determine the safety critical-
ity of systems and provide guidelines for the corresponding testing. Some of
them (but probably not all) are:

CEI/IEC 61508—Functional safety of electrical/electronic/

 programmable safety-related systems
DO-178-B—Software considerations in airborne systems and

 equipment certification
pr EN 50128—Software for railway control and protection systems

Def Stan 00-55—Requirements for safety-related software in

 defense equipment
IEC 880—Software for computers in the safety systems of nuclear

 power stations
MISRA—Development guidelines for vehicle-based software

FDA—American Food and Drug Association (pharmaceutical

 standards)

The standards are application-specific, and that can make it difficult to
determine what to do if we have to do with multidisciplinary products. None-
theless, standards do provide useful guidance. The most generic of the standards
listed above is IEC 61508; this may always be used if a system does not fit into
any of the other types.

26

Book_samlet.indb 26 2/19/08 8:12:50 PM

1.2 Product Paradigms 27

All the standards operate with so-called software integrity levels (SILs).

This table shows an example of a classification.

The concept of SILs allows a standard to define a hierarchy of levels of
testing (and development). A SIL is normally applied to a subsystem; that is,
we can operate with various degrees of SILs within a single system, or within
a system of systems. The determination of the SIL for a system under testing
is based on a risk analysis.

The standards concerning safety critical systems deal with both develop-
ment processes and supporting processes, that is, project management, con-
figuration management, and product quality assurance.

We take as an example the CEI/IEC 61508 recommends the usage of test case
design techniques depending on the SIL of a system. This standard defines
four integrity levels: SIL4, SIL3, SIL 2, and SIL1, where SIL4 is the most criti-
cal.

For a SIL4-classified system, the standard says that the use of equivalence
partitioning is highly recommended as part of the functional testing. Fur-
thermore the use of boundary value analysis is highly recommended, while
the use of cause-effect graph and error guessing are only recommended. For
white-box testing the level of coverage is highly recommended, though the
standard does not say which level of which coverage.

The recommendations are less and less strict as we come down the SILs
in the standard.

 SIL
Value

A (100.000.000) B (100.000) C (100) D (1)

Safety Many people killed Human lives in
danger

Damage to physi-
cal objects; risk of
personal injury

Insignificant dam-
age to things; no
risk to people

Economy Financial catastro-
phe (the company
must close)

Great financial
loss (the compa-
ny is threatened)

Significant
financial loss
(the company is
affected)

Insignificant finan-
cial loss

Security Destruction/disclo-
sure of strategic
data and services

Destruction/ dis-
closure of critical
data and services

Faults in data No risk for data

Environment Comprehensive and
irreparable damage
to the environment

Reparable, but
comprehensive
damage to the
environment

Local damage to
the environment

No environmental
risk

Book_samlet.indb 27 2/19/08 8:12:50 PM

28 Basic Aspects of Software Testing

If you don’t measure
you’re left with only one reason to believe you’re in control:

hysterical optimism.

For highly safety-critical systems the testers may be required to deliver a
compliance statement or matrix, explaining how the pertaining regulations
have be follow and fulfilled.

1.3 Metrics and Measurement
Tom De Marco, one of the testing gurus, once said:

One of the principles of good planning, both of testing and anything
else, is to define specific and measurable goals for the activities. But it is not
enough for goals to be measurable; we must also collect facts that can tell us
if we have indeed achieved the goals.

1.3.1 Measuring in General
For facts or data collection we operate with the following concepts:

Metric—A definition of what to measure, including data type, scale,

 and unit
Measuring method—The description of how we are going to get

 the data
Measurements—The actual values collected for the metrics

An example could be that the metric for the size of a book is “number of
pages”; the measuring method is to “look at the last page number”; and the
measurement for Alice in Wonderland, ISBN 7409746, is “54.”

It is a good idea to establish a measurement plan as part of the project
plan or master test plan. This should specify the metrics we want to measure
and the measuring methods, who is going to measure, and perhaps most im-
portantly: how the measurements will be analyzed and used.

Our measurements are derived from raw data such as time sheets, inci-
dent reports, test logs, and work sheets. Direct measurements are measurements
we get directly from the raw data, for example, by counting the number of
log sheets for passed test procedures and counting the number of incident
reports. Indirect measurements are measurements we can calculate from direct
measurements.

28

Book_samlet.indb 28 2/19/08 8:12:51 PM

1.2 Product Paradigms 29

Most direct measurements have no meaning unless they are placed in
relation to something. Number of incidents as such—for example, 50—says
nothing about the product or the processes. But if we calculate the defects
found compared to the estimated amount of defects it gives a much better
indication—either of our estimation or of the quality of the product!

It is a common mistake to think that only objective data should be used.
Objective data is what you can measure independently of human opinions.
But even though subjective data has an element of uncertainty about it, it can
be very valuable. Often subjective data is even cheaper to collect than objec-
tive data.

A subjective metric could be:
The opinion of the participants in walk-throughs concerning the useful-

ness of the walk-through activity on a scale from 1 to 5, where 1 is lowest and
5 is highest.

This is easy to collect and handle, and it gives a good indication of the
perception of the usefulness of walk-throughs.

The metrics should be specified based on the goals we have set and other
questions we would like to get answers to, such as how far we are performing
a specific task in relation to the plan and expectations.

1.3.2 Test-Related Metrics
Many, many measurements can be collected during the performance of the
test procedures (and any other process for that matter). They can be divided
into groups according to the possibilities for control they provide. The groups
and a few examples of direct measurements are listed here for inspirational
purposes; the lists are by no means exhaustive.

Measurements about progress

Of test planning and monitoring:

Tasks commenced

Task completed

Of test development:

Number of specified and approved test procedures

Relevant coverages achieved in the specification, for example,

for code structures, requirements, risks, business processes

Other tasks completed

Of test execution and reporting:

Number of executed test procedures (or initiated test

 procedures)
Number of passed test procedures

Book_samlet.indb 29 2/19/08 8:12:51 PM

30 Basic Aspects of Software Testing

Number of passed confirmation tests

Number of test procedures run as regression testing

Other tasks completed

Of test closure:

Tasks completed

 For each of these groups we can collect measurements for:

Time spent on specific tasks both in actual working hours and

 elapsed time
Cost both from time spent and from direct cost, such as license fees

Measurements about coverage:

Number of coverage elements covered by the executed test

 procedures code structures covered by the test

Measurements about incidents:

Number of reported incidents

Number of incidents of different classes, for example, faults,

 misunderstandings, and enhancement requests
Number of defects reported to have been corrected

Number of closed incident reports

Measurements about confidence:

Subjective statements about confidence from different stakeholders

All these measurements should be taken at various points in time, and the

time of the measuring should be noted to enable follow-up on the develop-
ment of topics over time, for example the development in the number of open
incident reports on a weekly basis.

It is equally important to prepare to be able to measure and report status
and progress of tasks and other topics in relation to milestones defined in the
development model we are following.

To be able to see the development of topics in relation to expectations,
corresponding to factual and/or estimated total numbers are also needed. A
few examples are:

Total number of defined test procedures

Total number of coverage elements

Total number of failures and defects

Actual test object attributes, for example, size and complexity

Planned duration and effort for tasks

Planned cost of performing tasks

30

Book_samlet.indb 30 2/19/08 8:12:52 PM

1.2 Product Paradigms 31

1.3.3 Analysis and Presentation of Measurements
It is never enough to just collect measurements. They must be presented and
analyzed to be of real value to us. The analysis and presentation of measure-
ments are discussed in Section 3.4.2.

1.3.4 Planning Measuring
It is important that stakeholders agree to the definition of the metrics and
measuring methods, before any measurements are collected. Unpopular or
adverse measurements may cause friction, especially if these basic definitions
are not clear and approved. You can obtain very weird behaviors by introduc-
ing measurements!

There is some advice you should keep in mind when you plan the data you
are going to collect. You need to aim for:

Agreed metrics —Definitions (for example, what is a line of code),
 scale (for example, is 1 highest or lowest), and units (for example, sec-
 onds or hours) must be agreed on and understood

Needed measures —What is it you want to know, to monitor, and to
 control?

Repeatable measurements —Same time of measure and same in
 strument must give the same measurement

Precise measurements —Valid scale and known source must be used
Comparable measurements —For example, over time or between

 sources
Economical measurements —Practical to collect and analyse com

 pared to the value of the analysis results
Creating confidentiality —Never use measurements to punish or

 award individuals
Using already existing measurements —Maybe the measurements

 just need to be analyzed in a new way
Having a measurement plan —The plan should outline what, by

 whom, when, how, why
Using the measurements —Only measure what can be used

 immediately and give quick and precise feedback

Questions
1. What is the development life cycle and the product life cycle?
2. What are the building blocks in software development models?
3. What are the basic development model types?

Book_samlet.indb 31 2/19/08 8:12:52 PM

32 Basic Aspects of Software Testing

4. What is the difference between a waterfall development model and a
 V-model?
5. What are the advantages of a W-model?
6. What is the main difference between iterative development and
 incremental development?
7. What are the characteristics of projects following an iterative model?
8. What does RAD stand for?
9. What is the principle in Boehm’s spiral model?
10. What are the value principles for agile development?
11. What is the most interesting aspect of XP from a testing point of view?
12. What is the standard V-model that everybody should follow?
13. What is the test object in component testing?
14. What are stubs and drivers used for?
15. When should an individual component test stop?
16. What are the test objects in integration testing?
17. Which integration strategies exist?
18. Which techniques could be used in system testing?
19. How is acceptance testing different from the other test levels?
20. What are the supporting processes discussed in this book?
21. What are the four quality-assurance activities?
22. What is validation?
23. Why is gold-plating dangerous?
24. What is verification?
25. What are the five project management activities?
26. What are the four configuration management activities?
27. What are the purposes of each of them?
28. What can be placed under configuration management from a testing
 point of view?
29. What is the interface between testing and technical writers?
30. What is a system of systems?
31. What should be considered when testing a system of systems?
32. What are the value categories in safety critical systems?
33. What is a SIL?
34. How can standards guide the testing of a safety-critical system?
35. What is the difference between a direct and an indirect measurement?
36. Why can subjective measurements be useful?
37. What are the groups for which testers can collect information?
38. When should measuring take place?
39. How should measurements be used?
40. What is the most important aspect of measurements apart from using
 them?

32

Book_samlet.indb 32 2/19/08 8:12:52 PM

2
CHAPTER

Contents

2.1 Processes in General

2.2 Test Planning and
 Control

2.3 Test Analysis and
 Design

2.4 Test Implementation
 and Execution

2.5 Evaluating Exit
 Criteria and Reporting

2.6 Test Closure

Testing Processes

Everything we do, from cooking a meal to producing the most
complicated software products, follows a process. A process

is a series of activities performed to fulfill a purpose and produce
a tangible output based on a given input.

The process view on software development is gaining more
and more interest. Process models are defined to assist organi-
zations in process improvement—that is, in making their work
more structured and efficient.

Testing can also be regarded as a process.
Like all processes the test process can be viewed at different

levels of detail. An activity in a process can be seen as a process
in its own right and described as such. The generic test process
consists of five activities or processes. Each of these is treated like
a separate and complete process.

Test development is what is usually understood as the real test
work. This is sometimes divided into two subprocesses, namely:

 Test analysis and design;
 Test implementation and execution.

The borderline between the two subprocesses is blurred and
the activities are iterative across this borderline.

The two subprocesses are, however, discussed individually
here.

33

Book_samlet.indb 33 2/19/08 8:12:53 PM

34 Testing Processes

2.1 Processes in General
2.1.1 The Concept of a Process
A process is a series of activities performed to fulfill a specific purpose. Based on
an input to the process and following the activities—also called the procedure—a
tangible output is produced.

It is important to remember that the tangible output (for example, a specifica-
tion) is not the goal itself. The goal is to perform the activities, to think, to discuss,
to try things out, to make decisions, to document, and whatever else is needed. The
tangible output is the way of communicating how the purpose of the process has
been fulfilled.

Processes can be described and hence monitored and improved. A process de-
scription must always include:

 A definition of the input
 A list of activities—the procedure
 A description of the output

In the basic description of a process, the purpose is implicitly described in

the list of activities.
For a more comprehensive and more useful process description the fol-

lowing information could also be included:

 Entry criteria—What must be in place before we can start?
 Purpose—A description of what must be achieved ?
 Role—Who is going to perform the activities?
 Methods, techniques, tools—How exactly are we going to perform
 the activities?
 Measurements—What metrics are we going to collect for the process?
 Templates—What should the output look like?
 Verification points—Are we on the right track?
 Exit criteria—What do we need to fulfill before we can say that
 we have finished?

 A process description must be operational. It is not supposed to fill pages
and pages. It should fit on a single page, maybe even a Web page, with refer-
ences to more detailed descriptions of methods, techniques, and templates.

2.1.2 Monitoring Processes
It is the responsibility of management in charge of a specific area to know
how the pertaining processes are performed. For testing processes it is of
course important for the test leader to know how the testing is performed and
progressing.

Book_samlet.indb 34 2/19/08 8:12:53 PM

2.1 Processes in General 35

Furthermore, it is important for the people in charge of process improve-
ment to be able to pinpoint which processes should be the target processes for
improvement activities and to be able to predict and later determine the effect
of process improvement activities.

This is why the description for each process should include the metrics we
are interested in for the process, and hence the measurements we are going to
collect as the process is being performed.

Metrics and measurements were discussed in Section 1.3, and Section
3.4 discusses how test progress monitoring and control can be performed. In
this chapter a few metrics associated with the activities in each of the test
processes are listed for inspiration.

2.1.3 Processes Depend on Each Other
The input to a process must be the output from one or more proceeding
process(es)—except perhaps for the very first, where the infamous napkin
with the original idea is the input. The output from a process must be the in-
put to one or more other processes—even the final product, which is the input
to the maintenance process.

The dependencies between processes can be depicted in a process model,
where it is shown how outputs from processes serve as inputs to other processes.

A process model could be in a textual form or it could be graphical, as
shown in the following figure. Here, for example, the output from the top-
left process serves as input to the top-middle process and to the lower-left
process.

The figure only shows a tiny extract of a process model, so some of the
processes deliver input to processes that are not included in the figure.

2.1.4 The Overall Generic Test Process
Testing is a process. The generic test process defined in the ISTQB foundation
syllabus can be described like this:

The purpose of the test process is to provide information to assure the
quality of the product, decisions, and the processes for a testing assignment.

Processes depend on

each other.

Output n = Input m

Book_samlet.indb 35 2/19/08 8:12:54 PM

36 Testing Processes

The inputs on which this process is based are:
 Test strategy
 Project plan
 Master test plan
 Information about how the testing is progressing

 The activities are:

 Test planning and control
 Test development
 Test analysis and design
 Test implementation and execution
 Evaluating exit criteria and reporting
 Test closure activities

 The output consists of:

 Level test plan
 Test specification in the form of test conditions, test design, test
 cases, and test procedures and/or test scripts
 Test environment design and specification and actual test environ-

 ment including test data
 Test logs
 Progress reports
 Test summary report
 Test experience report

The generic test process is applicable for each of the dynamic test levels to
be included in the course of the development and maintenance of a product.
So the process should be used in testing such as:

 Component testing
 Integration testing
 System testing
 Acceptance testing

The test levels are described in Chapter 1.
Since we apply the view that the concept of testing covers all types of

product quality assurance, the generic test process is also applicable to static
test (reviews), static analysis (automated static test), and dynamic analysis
(run-time analysis of programs). Static testing is described in Chapter 6.

The static test type processes and the level specific test processes depend
on each other; and each of them hook into other development processes and
support processes. This is described in Chapter 1.

Book_samlet.indb 36 2/19/08 8:12:54 PM

2.1 Processes in General 37

An example of process dependencies is:
The software requirements specification—output from the software require-
ments specification process—is input to an inspection process and to the sys-
tem test process.

 There are many more dependencies. Some of them are described in the
following sections.

The test activities need not be performed in strict sequential order. Test planning
and control are constant activities in the sense that they are not just done once
in the beginning of the test assignment. Monitoring of the process should be
done on an ongoing basis, and controlling and replanning activities performed
when the need arises. Sometimes test analysis and design is performed in par-
allel with test implementation and execution. A model is not a scientific truth;
when using a model, even a very well-defined model, we should be open for
necessary tailoring to specific situations.

The generic test process is iterative—not a simple straightforward process. It must
be foreseen that we’ll have to perform the activities more than once in an
iterative way before the exit criteria have been fulfilled. The iterations to be
foreseen in the test process are shown in the figure here.

Experience shows that in most cases three iterations must be reckoned
with as a minimum before the test process can be completed.

The first activity from which an iteration may occur is the test implemen-
tation and execution. This is where we detect the failures, when the actual
result is different from the expected.

1

2

3
4

Book_samlet.indb 37 2/19/08 8:12:55 PM

38 Testing Processes

The resulting iterations may be:
1 The defect is in the test object.

A calculation does not give the expected result, and it appears that the algo-
rithm for the calculation has been coded wrongly.

 When the defect has been corrected we must retest the software using the
test procedure that encountered the failure in the first place. We’ll probably
also perform some regression testing.

2 The defect is in the test procedure.

A calculation does not give the expected result, but here it appears that the
test case was wrong.

 The defect must be corrected and the new test case(s) must be executed.
This iteration usually goes back to the analysis and design activity.
The second activity from which an iteration may occur is the evaluation of the
exit criteria. This is where we find out if the exit criteria are not met.
The resulting iteration in this situation may be:

3 More test cases must be specified to increase coverage, and these must then
be executed.

In the checking it turns out that the decision coverage for a component is only
87%. One more test case is designed and when this is executed the coverage
reaches 96%.

4 The exit criteria are relaxed or strengthened in the test plan.

The coverage is found to be too small because of an-error handling routine
that is very hard to reach. The required coverage for the component is relaxed
to 85%.

The generic test process described in detail in the following is primar-
ily aimed for a scripted test where the test is specified before the execution
starts.

This does not mean that this test process is not useful for other tech-
niques. Even in exploratory testing where you test a little bit and direct the
further test based on the experience gained, you need to plan and control
what is going on, to analyze and design (at least in your head), to execute, to
report (very important!), and to close the testing.

Book_samlet.indb 38 2/19/08 8:12:55 PM

2.2 Test Planning and Control 39

2.1.5 Other Testing Processes
The test process defined in the ISTQB syllabus is just one example of a possible
testing process. Each organization should create its own test process suitable
for the specific circumstances in the organization.

A test process may be created from scratch or it may be created as a tailor-
ing of a standard process.

The various process improvement models that exist provide frameworks
for processes. Some cover all the process areas in a development organization;
others cover the test area in details. Some of the most used process improve-
ment models are discussed in Chapter 8. Two of these are presented here as
examples of the framework such process models can provide.

One of the test specific models, Test Process Improvement Model (TPI), de-
fines a list of 20 key areas. These cover the total test process and each of them
is a potential process in its own right.

The 20 key areas are grouped into four so-called cornerstones as follows:

 Life cycle—Test strategy, life cycle model, moment of involvement
 Techniques—Estimating and planning, test specification tech-

 niques, static test techniques, metrics
 Infrastructure—Test tools, test environment, office environment
 Organization—Commitment and motivation, test functions and

 training, scope of methodology, communication, reporting, defect
 management, testware management, test process management,

 evaluating, low-level testing

 The TPI model provides inspiration as to which activities could and should
be specified for each of these areas when they are being defined as processes
in an organization.

Another process model is the Critical Testing Processes (CTP). This model
also defines a number of process areas. In this model the process areas are
grouped into four classes:

 Plan—Establish context, analyze risks, estimate, plan
 Prepare—Grow and train team, create testware, test environment,
 and test processes
 Perform—Receive test object(s), execute and log tests
 Perfect—Report bugs, report test results, manage changes

2.2 Test Planning and Control
The purpose of the test planning process is to verify the mission of the testing,
to define the objectives of the testing, and to make the necessary decisions to
transform the test strategy into an operational plan for the performance of the
actual testing task at hand.

Book_samlet.indb 39 2/19/08 8:12:56 PM

40 Testing Processes

 The planning must first be done at the overall level resulting in a master
test plan. The detailed planning for each test level is based on this master test
plan. Identical planning principles apply for the overall planning and the de-
tailed planning.
 The purpose of the control part is to ensure that the planned activities are
on track by monitoring what is going on and take corrective actions as appro-
priate.

 The inputs on which this process is based are:
 Test strategy
 Master test plan
 Information about how the testing is progressing

 The activities are:
 Verify the mission and define the objectives of the testing
 Decide and document how the general test strategy and the project
 test plan apply to the specific test level: what, how, where, who
 Make decisions and initiate corrective actions as appropriate as the

 testing progresses

 The output consists of:
 Level test plan

2.2.1 Input to Test Planning and Control
The planning of a test level is based on the relevant test strategy, the project
plan for the project to which the test assignment belongs, and the master test
plan. The contents of these documents, as well as the detailed contents of the
level test plan are discussed in Chapter 3.

The level test plan outlines how the strategy is being implemented in the
specific test level in the specific project at hand. Basically we can say that the
stricter the strategy is and the higher the risk is, the more specific must the
level test plan be. Testing and risk is also discussed in Chapter 3.

The test level plan must be consistent with the master test plan. It must
also be consolidated with the overall plan for the project in which the testing
is a part. This is to ensure that schedules and resources correspond, and that
other teams, which interface with the test team in question, are identified.

The decisions to make in the test planning and control process are guided
by the expected contents of the test plan. Don’t get it wrong: The decisions are
not made for the purpose of writing the plan, but for the purpose of getting agreement
and commitment of all the stakeholders in the test to be performed.

The planning and control of the test are continuous activities. The initial
planning will take place first. Information from monitoring what is going on
as the testing progresses may cause controlling actions to be taken. These ac-

Book_samlet.indb 40 2/19/08 8:12:56 PM

2.2 Test Planning and Control 41

tions will usually involve new planning and necessary corrections to be made
in the plan when it no longer reflects the reality.

2.2.2 Documentation of Test Planning and Control
The tangible output of this process is the level test plan for the testing level
to which the process is applied. The structure of the level test plan should be
tailored to the organization.

In order not to start from scratch every time it is, however, a good idea to
have a template. A template could be based on the IEEE 829 standard. This
standard suggests the following contents of a test plan—the words in brackets
are the corresponding concepts as defined in this syllabus:

Test plan identifier

1. Introduction (scope, risks, and objectives)
2. Test item(s) (test object(s))
3. Features to be tested
4. Features not to be tested
5. Approach (targets, techniques, templates)
6. Item pass/fail criteria (exit criteria including coverage criteria)
7. Suspension criteria and resumption requirements
8. Test deliverables (work products)
9. Testing tasks (analysis, design, implementation, execution, evaluation,
 reporting, and closure; all broken down into more detailed activities in
 an appropriate work break down structure)
10. Environmental needs
11. Responsibilities
12. Staffing and training needs
13. Schedule
14. Risks and contingencies

Test plan approvals

The level test plan produced and maintained in this process is input to

all the other detailed test processes. They all have the level test plan as their
reference point for information and decisions.

2.2.3 Activities in Test Planning
It cannot be said too often: Test planning should start as early as possible. The ini-
tial detailed planning for each of the test levels can start as soon as the docu-
mentation on which the testing is based has reached a suitable draft level.

The planning of the acceptance testing can start as soon as a draft of the
user requirements is available.

Book_samlet.indb 41 2/19/08 8:12:56 PM

42 Testing Processes

Early planning has a number of advantages. It provides, for example, time
to do a proper planning job, adequate time to include the stakeholders, early
visibility of potential problems, and means of influencing the development
plan (e.g., to develop in a sequence that expedites testing).

The test planning activities must first of all aim at setting the scene for the
testing assignment for the actors in accordance with the framework. The test
planning for a test level must verify the mission and define the objectives—
that is the goal or purpose, for the testing assignment. Based on this the more
detailed planning can take place.

2.2.3.1 Defining Test Object and Test Basis
The object of the testing depends on the test level as described in Chapter 1.
Whatever the test object is, the expectations we have for it, and therefore what
we are going to test the fulfillment of, should be described in the test basis.

The test planning must identify the test basis and define what it is we are
going to test in relation to this. This includes determination of the coverage
to achieve for the appropriate coverage item(s). The expected coverage must
be documented in the level test plan as (part of) the completion criteria. The
coverage items depend on the test basis.

Examples of the most common test basis and corresponding coverage
items are listed in the following table.

Test level Test basis Coverage items

Component testing
 Requirements
 Detailed design
 Code

 Statements
 Decisions
 Conditions

Component integration
testing Architectural design

 Internal interfaces
 Individual parameters
 Invariants

System testing Software requirements
 specification

 Requirements:
 - functional
 - nonfunctional

System integration testing Product design
 External interfaces
 Individual parameters
 Invariants

Acceptance testing
 User requirements
 specification
 User manual

 Requirements
 expressed as
 - use cases
 - business scenarios

Book_samlet.indb 42 2/19/08 8:12:57 PM

2.2 Test Planning and Control 43

Standards, both internal and external to the organization, may also be
used as the test basis.

2.2.3.2 Defining the Approach
The test approach must be based on the strategy for the test at hand. This sec-
tion expands the approach and makes it operational.

The approach must at least cover:

 The test methods and test techniques to use
 The structure of the test specification to be produced and used
 The tools to be used
 The interface with configuration management
 Measurements to collect
 Important constraints, such as availability or “fixed” deadline

for the testing we are planning for.
First of all, the test object determines the method:

 If the test object is something that can be read or looked at, the
 method is static test—the specific choice of static test type(s) de-

 pends on the criticality of the object.
 If the test object is executable software, the method is dynamic test.

 For each of the dynamic test types a number of test case design techniques may
be used. The test case design techniques are discussed in detail in Chapter 4.
The choice of test techniques is dependent on the test object, the risks to be
mitigated, the knowledge of the software under testing, and the nature of the
basis document(s). The higher the risk, the more specific should the recom-
mendation for the test case design techniques to use be, and the more thorough
should the recommended test case design techniques be.

The structure of the test specification must be outlined here. Test specifications
may be structured in many ways—for example, according to the structure
suggested in IEEE 829. This is described in Section 2.3.2.

Static test Documents the static
 test is based on

 Pages
 Requirements
 Test cases

Book_samlet.indb 43 2/19/08 8:12:57 PM

44 Testing Processes

The usage of tools must also be described in the approach. Tools are de-
scribed in Chapter 10. The strategy for the tool usage must be adhered to.

The interface with configuration management covers:

 How to identify and store the configuration items we produce in the
 test process

 How to get the configuration items we need (for example, design
 specifications, source code, and requirements specifications)

 How to handle traceability
 How to register and handle incidents

A reference to descriptions in the configuration management system,
should suffice here, but we are not always that lucky. If no descriptions exist
we must make them—and share them with those responsible for configura-
tion management.

The measurements to be collected are used for monitoring and control of
the progress of the testing. We must outline what and how to measure in the
approach. Measurements are discussed in detail in Sections 1.3 and 3.4.

2.2.3.3 Defining the Completion Criteria
The completion criteria are what we use to determine if we can stop the test-
ing or if we have to go on to reach the objective of the testing.

The completion criteria are derived from the strategy and should be based
on a risk analysis; the higher the risk, the stricter the completion criteria; the
lower the risk the less demanding and specific the completion criteria.

It is important to decide up front which completion criteria should be
fulfilled before the test may be stopped.

The completion criteria guide the specification of the test and the selec-
tion of test case design techniques. These techniques are exploited to provide
the test cases that satisfy the completion criteria. Test case design techniques
are discussed in detail in Chapters 4 and 5.

The most appropriate completion criteria vary from test level to test level.
Completion criteria for the test may be specified as follows:

 Specified coverage has been achieved
 Specified number of failures found per test effort has been achieved
 No known serious faults
 The benefits of the system are bigger than known problems
 (The time has run out)

Book_samlet.indb 44 2/19/08 8:12:57 PM

2.2 Test Planning and Control 45

The last one is not an official completion criterion and should never be
used as such; it is nonetheless often encountered in real life!

Coverage is a very often used measurement and completion criteria in
testing. Test coverage is the degree, expressed as a percentage, to which the
coverage items have been exercised by a test.

The above mentioned completion criteria may be combined and the com-
pletion criteria for a test be defined as a combination of more individual com-
pletion criteria.

Examples of combinations of completion criteria for each of the test levels
may be:

 Component testing
	 100% statement coverage
	 95% decision coverage
	 No known faults
 Integration testing (both for components and systems)
	 90% parameter coverage
	 60% interface coverage
	 No known faults
 System testing
	 90% requirement coverage
	 100% equivalence class coverage for specific requirements
	 No known failures of criticality 1 or 2
	 Stable number of failures per test hour for more than 20

 test hours
 Acceptance testing
	 100% business procedure coverage
	 No known failures of criticality 1

2.2.3.4 Defining Work Products and Their Relationships
The number of deliverables, their characteristics, and estimates of their sizes
must be defined, not least because this is used as input for the detailed esti-
mation and scheduling of all the test activities, but also because the precision
of what is going to be delivered sets stakeholders’ expectations.

Book_samlet.indb 45 2/19/08 8:12:58 PM

46 Testing Processes

Typical deliveries or work products from a test level are:

 Level test plan(s)
 Test specification(s)
 Test environment(s)
 Test logs and journals
 Test reports

 The level test plan is the plan being specified in this process.
The test specification is a collective term for the result of the test design

and implementation activities. This is the most complicated of the work prod-
ucts. It is important that the structure of the test specification is outlined in the
level test plan, so that its complexity is understood and taken into consider-
ation when the effort is estimated, and also to guide the work in the subse-
quent activities.

Test specifications may be structured in many ways. Each organization
must figure out which structure is the most suitable for them. No matter the
structure the test specification could be held in one document or in several
separate documents; the physical distribution of the information is not im-
portant, but the actual contents are.

The structure shown and explained here is based on the structure sug-
gested in IEEE 829. A full test specification may consists of:

 A test design consisting of a number of test groups (or designs) with
 test conditions and high-level test cases derived from the basis docu-

 mentation. The designs will typically reflect the structure of the test
 basis documentation. The relationships between the elements in the
 basis documentation and the high-level test cases may well be quite

 complicated, often including even many-to-many relationships.
 A number of low-level test cases extracted from the high-level test cases

 and being made explicit with precise input and output specifications .
 A number of test procedures each encompassing a number of test

 cases to be executed in sequence. The relationships between high-
 level test cases and test procedures may also be complicated and

 include many-to-many relationships.

This structure is applicable to test specifications at all test levels, for
example, for:

 Component testing
 Integration testing
 System testing
 Acceptance testing

Book_samlet.indb 46 2/19/08 8:12:58 PM

2.2 Test Planning and Control 47

The detailed contents of the test specification are discussed in Section 2.3.3.

2.2.3.5 Scoping the Test Effort
The definition of exhaustive testing is: test case design technique in which the
test case suites comprise all combinations of input values and preconditions
for component variables. No matter how much we as testers would like to do
the ultimate good job, exhaustive testing is a utopian goal.

We do not have unlimited time and money; in fact we rarely have enough
to obtain the quality of the testing we would like. It would in almost all cases
take an enormous amount of resources in terms of time and money to test
exhaustively and is therefore usually not worth it.

We have three mutually dependent parameters that we as testers need to
balance. In fact, for everything we do, we need to balance these parameters,
but here we’ll look at them from a tester’s view point.

The parameters are:

Time: The available calendar time
Resources: The available people and tools
Quality: The quality of the testing

These parameters form what we call the quality triangle, that is the tri-
angle for the quality of work we can deliver.

In a particular project we need to initially achieve a balance between the
time and resources spent on testing and the quality of the testing we want.

The basic principle of the quality triangle is: It is not possible to change one of
the parameters and leave the other two unchanged—and still be in balance!

The time and the resources are fairly easy concepts to understand. Testing
takes time and costs resources. The quality of the testing is more difficult to
assess. The easiest way to measure that quality is to measure the test cover-
age. The test coverage is the percentage of what we set out to test (e.g., state-
ments) that we have actually been able to cover with our test effort.

Test coverage is a measure for the quality of the test.
When we perform the test planning we need to look further ahead than

the horizon of testing. Important factors could cause one of the parameters in
the quality triangle for testing to be fixed.

It may, for example, be necessary:
 To fix a release date for economical or marketing reasons if the product
 must be presented at the yearly sales exhibition for the particular type of
 product
 To keep a given price, especially in fixed price projects
 To obtain a specific level of quality, for example in safety critical products

Book_samlet.indb 47 2/19/08 8:12:59 PM

48 Testing Processes

 Everything needs to be balanced. The time and cost of testing to enhance
the quality must be balanced with the cost of missing a deadline or having
remaining defects in the product when it goes on the market.

Work Breakdown Structure
One of the things on which the test planning is based, is a list of all the tasks
to be performed. This list should be in the form of a work breakdown struc-
ture of the test process at hand. If we use the test process defined here the
overall tasks are planning, monitoring, control, analysis, design, implementa-
tion, execution, evaluation, reporting, and closure, all broken down into more
detailed activities in an appropriate work breakdown structure.

The tasks, together with resources and responsibilities, are input items to
the test schedule.

A list and a description of every single task must therefore be produced.
If a task is not mentioned here it will probably not get done. Be conscientious:
remember to remember EVERYTHING! Be as detailed as necessary to get a precise
estimate. A rule of thumb is to aim at a break down of activities to tasks that
can be done in no more than about 30 to 40 hours.

All the activities in the test process must be included in the task list. Do
not forget to include the test management activities like planning, monitor-
ing, and control. Also remember that the estimation and scheduling takes
time—these activities must be included as well.

It is important here to remember that the test process is iterative. This
must of course be taken into account during the estimation, but it will facili-
tate the estimation if iterations of activities are explicitly mentioned in the
task list.

Defining Test Roles
A (software test) project is like a play in which all roles must be filled in order
for the play to be performed. Some roles are big, some are small, but they are
all important for the whole.

Real people must fill the roles. Real people vary; they have different per-
sonalities, a fact of life that it is almost impossible to change. Technical skills
you can learn, but your personality is to a large extent fixed when you reach
adulthood. Different people fill different roles in different ways, and the dif-
ferences between people may be used to the advantage of everybody, if the
basics of team roles are known. This is discussed in detail in Chapter 10.

It is of great importance in the general understanding of the work to be
done that the roles are described. Processes and procedures may be described
thoroughly, but only when the activities and tasks are connected to roles and
thereby to real people do they become really meaningful.

Book_samlet.indb 48 2/19/08 8:12:59 PM

2.2 Test Planning and Control 49

The roles to handle the testing tasks may be:

 Test leader (manager or responsible)
 Test analyst/designer
 Test executer
 Reviewer/inspector
 Domain expert
 Test environment responsible
 (Test)tool responsible

Test teams are formed by all these roles. We need different teams depend-
ing on which test phase we are working in, but the principles are the same:

 All relevant roles must be present and filled in the team
 A role can be filled by one person or more people, depending on the

 size of the testing assignment at hand
 One person can fill one role or more roles, again depending on the
 size (but keep in mind that less than 25% time for a role = 0% in

 real life)

The roles are assigned to organizational units and subsequently to

named people. The necessary staff to fulfill the roles and take on the respon-
sibilities must be determined.

The roles each require a number of specific skills. If these skills are not
available in the people you have at your disposal, you must describe any train-
ing needs here. The training should then be part of the activities to put in the
schedule.

Producing the Schedule
In scheduling the tasks, the staffing and the estimates are brought together
and transformed into a schedule. Risk analysis may be used to prioritize the
testing for the scheduling: the higher the risk, the more time for testing and
the earlier the scheduled start of the testing task.

The result of this is a schedule that shows precisely who should do what
at which point in time and for how long.

A framework for the resources and the schedule must be obtained from
the overall project plan, and the result of the test scheduling must be recon-
ciled with the project plan.

Estimations for all the tasks are input to the scheduling. Once the tasks
are estimated they can be fitted into the project time line. Test estimation is
discussed in detail in Section 3.3.

The schedule is also based on the actual people performing the tasks, the
people’s efficiency, and their availability.

Book_samlet.indb 49 2/19/08 8:13:00 PM

50 Testing Processes

2.2.4 Activities in Test Control
As the testing progresses the control part of test management is about stay-
ing in control and making necessary corrections to the plan when it no longer
reflects the reality.

Measurements are collected in the test monitoring activities for all the
detailed activities in the test processes, and these measurements are analyzed
to understand and follow the actual progress of the planned test activities and
the resulting coverage. Decisions must be made if things are deviating signifi-
cantly from the plan, and corrective actions may be necessary.

The testing often gets pressed for time, since it is the last activity before
the product is released. When development is delayed it is tempting to short-
en the test to be able to keep the release date.

But if our testing time is cut, we have to change at least one other param-
eter in the quality triangle; anything else is impossible. It is important to point
this out to management. It is irresponsible if for example the consequences on
resources and/or testing quality of a time cut are not made clear. If it looks as
if we are going to end up in the all too familiar situation illustrated here, we
have to take precautions.

There is more about test monitoring and control in Section 3.4

2.2.5 Metrics for Test Planning and Control
Metrics to be defined for the monitoring and control of the test planning and
control activities themselves may include:

 Number of tasks commenced over time
 Task completion percentage over time
 Number of tasks completed over time
 Time spent on each task over time

This will of course have to be compared to the estimates and schedule of
the test planning and control activities.

2.3 Test Analysis and Design
The purpose of the test analysis and design activities is to produce test designs
with test conditions and tests cases and the necessary test environment based
on the test basis and the test goals and approach outlined in the test plan.

The inputs on which this process is based are:
 Level test plan
 Basis documentation

Book_samlet.indb 50 2/19/08 8:13:01 PM

2.3 Test Analysis and Design 51

 The activities are:
	 Analysis of basis documentation
	 Design of high-level test cases and test environment

 The output consists of:
	 Test design
	 Test environment design and specification

2.3.1 Input to Test Analysis and Design
The input from the level test plan that we need for this process is:

 Test objectives
 Scheduling and staffing for the activities
 Definition of test object(s)
 Approach—especially test case design techniques to use and
 structure and contents of the test specification
 Completion criteria, not least required coverage
 Deliverables

We of course also need the test basis—that is, the material we are going
to test the test object against.

2.3.2 Documentation of Test Analysis and Design
The result of the test analysis and design should be documented in the test
specification. This document or series of documents encompasses

 The test designs—also called test groups
 The test cases—many test cases per test design
 Test procedures—often many-to-many relationship with test cases

The overall structure of the test specification is defined in the level test
plan. The detailed structure is discussed below.

The test specification documentation is created to document the decisions
made during the test development and to facilitate the test execution.

2.3.3 Activities in Test Analysis and Design
The idea in structured testing is that the test is specified before the execution.
The test specification activity can already start when the basis documentation
is under preparation.

The test specification aims at designing tests that provide the largest pos-
sible coverage to meet the coverage demands in the test plan. This is where
test case design techniques are a great help.

Book_samlet.indb 51 2/19/08 8:13:01 PM

52 Testing Processes

The work with the specification of the test groups, the test conditions, the
test cases, and the test procedures are highly iterative.

A side effect of the analysis is that we get an extra review of the basis
documentation. Don’t forget to feed the findings back through the correct
channels, especially if the basis documentation isn’t testable.

2.3.3.1 Defining Test Designs
In test design the testing task is broken into a number of test design or test
groups. This makes the test development easier to cope with, especially for the
higher test levels. Test groups may also be known as test topics or test areas.

A test design or test group specification should have the following contents
according to IEEE 829:

Test design specification identifier

 1. Features to be tested (test conditions)
 2. Approach refinement
 3. List of high-level test cases
 4. List of expected test procedures
 5. Feature pass/fail criteria

Test design specification approvals

The groups and the procedures must be uniquely identified. The number
of test groups we can define depends on the test level and the nature, size, and
architecture of the test object:

 In component testing we usually have one test group per component
 For integration testing there are usually a few groups per interface
 For system and acceptance testing we typically have many test groups

 A few examples of useful test groups defined for a system test are:

 Start and stop of the system
 Functionality x
 Nonfunctional attribute xx
 Error situations

It should be noted that it is not very common to document the test design
as thoroughly as described here. Often a list of groups with a short purpose
description and list of the test procedures for each are sufficient.

Test group: 2 (2) Handling member information
The purpose of this test group is to test that the member information can be
created and maintained.

Book_samlet.indb 52 2/19/08 8:13:02 PM

2.3 Test Analysis and Design 53

 Test procedure: 2.1 (10) Creating new member
 Test procedure: 2.2 (14) Changing personal information
 Test procedure: 2.3 (11) Changing bonus point information
 Test procedure: 2.4 (13) Deleting member

The unique identification is the number in brackets, for example (10). The
number before the unique identifier is the sorting order to ensure that the
groups and procedures are presented in a logical order independently of the
unique number, for example 2.1. The “disorder” of the unique identification
is a sign of the iterative way in which they have been designed.

2.3.3.2 Identification of Test Conditions
The features to be tested mentioned in the test design can be expressed as
test conditions or test requirements. A test condition is a verifiable item or
element.

The nature of a test condition depends on the nature of the test basis
documentation. It may for example be a function, a transaction, a feature, a
requirement, or a structural element like an interface parameter or a state-
ment in the code.

The test conditions are based on or identical to our coverage items. They
are the items we are covering when we test the test object.

We cannot expect to be able to cover 100% of all the relevant coverage
items for our test. This is where we take the completion criteria into account
in our specification work.

The completion criteria often include the percentage of the coverage items
we must cover, called the coverage. We select the test conditions to get the
highest coverage. Prioritization criteria identified in the risk analysis and test
planning may be applied in the analysis activity to pick out the most impor-
tant coverage items if we cannot cover them all.

The completion criteria for a component test could include a demand for 85%
decision coverage.

If we are lucky the test conditions are clearly specified and identifiable in
the test basis documentation, but in many cases it can be quite difficult. The
earlier testers have been involved in the project, the easier this task usually is.

The documentation of a test condition must at least include:

 Unique identification
 Description
 Reference to test basis documentation, if not taken from there directly

Book_samlet.indb 53 2/19/08 8:13:02 PM

54 Testing Processes

The example here is based on the EuroBonus scheme of StarAlliance. This
short description is taken from the SAS Web site:
There are 3 member levels: Basis, Silver, Gold.
Your member level is determined by the number of Basis Points you earn within your
personal 12-months period. You will automatically be upgraded to Silver Member if you
earn 20.000 Basis Points during your earning period.
If you earn 50.000 Basis Points in the period, you become a Gold Member. The earning
period runs from the first day in the joining month and 12 months forward.

Some of the test conditions that which can be extracted from this are:

 1) When the sum of basis points is less than 20.000, the member status is
 Basis.
 2) When the sum of basis points is equal to or greater than 20.000, the
 member level is set to Silver.
 3) When the sum of basis points is equal to or greater than 50.000, the
 member level is set to Gold.
 There are many more—and just as many questions to be posed!

Only if the test conditions are not clearly defined in the basis documenta-
tion do we have to document them ourselves. If we do so we must get the test
conditions reviewed and approved by the stakeholders.

2.3.3.3 Creation of Test Cases
Based on the test conditions, we can now produce our first high-level test
cases and subsequently low-level test cases.

A high-level test case is a test case without specific values for input data
and expected results, but with logical operators or other means of defining
what to test in general terms.

The test cases we design should strike the best possible balance between
being:

 Effective: Have a reasonable probability of detecting errors
 Exemplary: Be practical and have a low redundancy
 Economic: Have a reasonable development cost and return on
 investment
 Evolvable: Be flexible, structured, and maintainable

 The test case design techniques make it possible to create test cases that
satisfy these demands.

The test techniques help us identify the input values for the test cases.
The techniques cannot supply the expected result.

Book_samlet.indb 54 2/19/08 8:13:03 PM

2.3 Test Analysis and Design 55

We use appropriate test case design technique(s) as specified in the test
level plan to create the high-level test cases. Test case design techniques are
discussed in Chapter 4.

The documentation of a test case at this stage must at least include:

 Unique identification
 Description
 References to test condition(s) on which the test case is based
 and to test design(s) to which the test case belongs

There may well be many-to-many relationships between test conditions
and high-level test cases and/or between high-level test cases and test de-
signs.

Even though IEEE is quite specific in its requirements for the test speci-
fication it is not very often that test conditions and high-level test cases are
officially documented. They are usually sketched out during the analysis and
design work. Only the test designs and their procedures and low-level test
cases are kept in the test specification. The decision about how much docu-
mentation of test conditions and high-level test cases to keep must be based
on the strategy and the risks involved.

From the test conditions in the earlier example we can design the following
high-level test cases using the equivalence partitioning technique:
HTC 1) Check that a negative sum of basis points is not allowed.
HTC 2) Check that a sum of basis points of less than 20.000 will give a mem-
bership level basis.
HTC 3) Check that a sum of basis points of more than 20.000 and less than
50.000 will give a membership level silver.
HTC 4) Check that a sum of Basis Points of more than 50.000 will give a mem-
bership level gold.

 The analysis of the basis documentation will also reveal requirements con-
cerning the test environment, not least the required test data. The test envi-
ronment should be specified to a sufficient level of details for it to be set up
correctly; and it should be specified as early as possible for it to be ready when
we need it. Test environment requirements are discussed later.

From the high-level test cases we go on to define the low-level test cases.
It is not always possible to execute all the test cases we have identified; the
actual test cases to be executed must be selected based on the risk analysis.

A low-level test case is a test case with specific values defined for both
input and expected result.

Book_samlet.indb 55 2/19/08 8:13:03 PM

56 Testing Processes

The documentation of a low-level test case must at least include:

 Unique identification
 Execution preconditions
 Inputs: data and actions
 Expected results including postconditions
 Reference(s) to test conditions and/or directly to basis documentation

One low-level test case created from the list of these high-level test cases
could be:

The expected result must be determined from the basis documentation
where the expectations for the coverage items are described. The expected result
must never, ever be derived from the code!

The expected results should be provided in full, including not only visible
outputs but also the final state of the software under testing and its environ-
ment. This may cover such factors as changed user interface, changed stored
data, and printed reports.

We may, for example, have the following test cases, where the first gives a
visible output and the second does not give a visible output, but makes a new
form current.

ID Precondition Input Expected result Postcondition

15.2

The current sum of
basis points for Mrs.
Hass is 14.300
The system is ready
for entry of newly
earned basis points for
Mrs. Hass.

Enter
6.500
Press
[OK]

The sum is shown
as 20.800
The member status
is shown as silver

The system is
ready for a new
member to be
chosen.

Case Input Expected result

1. Enter “2” in the field
“Number of journeys:”

Value in the field “Total points:” is the value
in field “Points per journey:” x 2.

2.
Try to enter “10” in the
field
“Number of journeys:”

Value in the field “Total points:” is un-
changed.
The error message pop-up is current and
showing error message no. 314.

Book_samlet.indb 56 2/19/08 8:13:03 PM

2.3 Test Analysis and Design 57

In some situations the expectations may not be formally specified. There-
fore it is sometimes necessary to identify alternative sources, such as technical
and/or business knowledge. RAD is a particular example of where the require-
ments may not be formally specified.
 If it turns out that it is not possible to identify what to test against, you
must never, ever just guess or assume. Nothing to test against entails no test!

Sometimes it can be difficult to determine the expected result from the
basis documentation. In such cases an oracle may be used. Oracles are dis-
cussed under tools in Section 9.3.2.

It cannot be pointed out strongly enough that if you guess about what to
test and go ahead with the test specification based on your assumptions and
guesses, you are wasting everybody’s time. The chance of your getting it right is
not high.

You also prevent your organization from getting better, because the people
responsible for the source documentation will never know that they could
easily do a better job. Go and talk to the people responsible for the source
documentation. Point out what you need to be able to test. Make suggestions
based on your test experience. Use some of the methods from test techniques
to express the expectations, for example decision tables. Help make the source
documentation better.

2.3.4 Requirements
This book is about testing, not requirements. A short introduction to require-
ments is, however, given in this section. The purpose of this is to make testers
understand requirements better, and equip them to take part in the work with
the requirements and to express test-related requirements for the require-
ments produced for a product.

All product development starts with the requirements. The higher level
testing is done directly against requirements. The lower level testing is done
against design that is based on the requirements. All testing is hence based
on the requirements.

2.3.4.1 Requirement Levels
Requirements should exist at different levels, for example:

 Business requirements
 User requirements
 System requirements

 Requirements are rooted in or belong to different stakeholders. Differ-
ent stakeholders speak different “languages” and the requirements must be
expressed to allow the appropriate stakeholders to understand, approve, and use
them.

Book_samlet.indb 57 2/19/08 8:13:04 PM

58 Testing Processes

The organization and top management “speak” money—they express
business requirements. Business requirements may be tested, but most often
they are not tested explicitly.
 The users speak “support of my work procedures”—they express user re-
quirements. User requirements are tested in the acceptance testing.

Following a possible product design, where the product is split up in, for
example, a software system and a hardware system, we must express the sys-
tem requirements. The software requirements are for the software developers
and testers, and they are tested in the system testing.

2.3.4.2 Requirement Types
The requirement specification at each level must cover
all types of requirements.

The most obvious requirements type is functional.
No functionality entails no system. But as important as
it may be, the functionality is not enough.

We must have some requirements expressing how
the functionality should behave and present itself.
These requirements are usually known as nonfunc-
tional requirements. We could also call them function-
ality-supporting requirements. These requirements are
discussed in detail in Chapter 5.

The functional and nonfunctional requirements
together form the product quality requirements.

On top of this we may have environment require-
ments. These are requirements that are given and can-
not be discussed. They can come both from inside and
outside of the organization and can be derived from
standards or other given circumstances. Environment
requirements may, for example, define the browser(s)

that a Web system must be able to work on, or a specific standard to be com-
plied with.

To make the requirements tower balance we need to have project require-
ments (or constraints) to carry the other requirements. These are cost-, re-
sources-, and time-related, and the worry of the project management.

2.3.4.3 Requirement Styles
Requirements can be expressed in many ways. Typical styles are:

 Statements
 Tasks
 Models
 Tables

Book_samlet.indb 58 2/19/08 8:13:04 PM

2.3 Test Analysis and Design 59

The most common style is the statement style. Here each requirement is
expressed as a single (or very few) sentences in natural language. Some rules
or recommendations should be observed when expressing requirements in
statements:

 Start with: “The product shall …”—to keep focus on the product or
 system

 Avoid synonyms—stick to a defined vocabulary
 Avoid subjective words (useful, high, easy)—requirements must be

 testable!
 Avoid generalities like “etc.” “and so on”—this is impolite; think

 the issue through
 Be aware of “and” and “or”—is this really two or more require-

 ments?

To make statement requirements more precise and testable we can use
metrics and include information such as the scale to use, the way to measure,
the target, and maybe acceptable limits. This is especially important for non-
functional requirements!

Examples of such requirements (with unique numbers) are:
[56] The maximum response time for showing the results of the calculation
described in requirements 65 shall be 5 milliseconds in 95% of at least 50 mea-
surements made with 10 simultaneous users on the system.

[UR.73] It shall take a representative user (a registered nurse) no more than
30 minutes to perform the task described in use case 134 the first time.

A task is a series of actions to achieve a goal. Task styles may be stories,
scenarios, task lists, or use cases. Requirements expressed in these ways are
easy to understand, and they are typically used to express user requirements.
They are easy to derive high-level test cases and procedures from.

A model is a small representation of an existing or planned object. Model
styles may be domain models, prototypes, data models, or state machines.

A table is a compact collection and arrangement of related information.
Tables may be used for parameter values, decision rules, or details for models.

The styles should be mixed within each of the requirement specifications
so that the most appropriate style is always chosen for a requirement.

The collection of requirements for each level documented in the require-
ment specification is in fact a model of the product or the system. This model
is the one the test is based on.

Book_samlet.indb 59 2/19/08 8:13:04 PM

60 Testing Processes

2.3.5 Traceability
References are an important part of the information to be documented in the
test specification. A few words are needed about these.

There are two sets of references:

 References between test specification elements
 References from test specification elements to basis documentation

The first set of references describes the structure of the elements in the
test specification. These may be quite complex with, for example, test cases
belonging to more test procedures and more test groups.

The references to the basis documentation enable traceability between
what we are testing and how we are testing it. This is very important in-
formation. Ultimately traceability should be possible between test cases and
coverage items in the basis documentation.

Traces should be two-way.
You should be able to see the traces from the test cases to the covered

coverage items. This will help you to identify if there
are test cases that do not trace to any coverage item—
in which case the test case is superfluous and should be
removed (or maybe a specification like a requirement or
two should be added!). This “backward” trace is also very
helpful if you need to identify which coverage item(s) a
test case is covering, for example, if the execution of the
test case provokes a failure.

You should also be able to see the traces from the cov-
erage items to the test cases. This can be used to show if
a coverage item has no trace, and hence is not covered by

a test case (yet!). This “forward” trace will also make it possible to quickly
identify the test case(s) that may be affected if a coverage item, say a require-
ment, is changed.

If the coverage items and the test cases are uniquely identified, preferably
by a number, it is easy to register and use the trace information.

Instead of writing the trace(s) to the coverage item(s) for each test case,
it is a good idea to collect the trace information in trace tables. This can be
done in the typical office automation system, such as in a Word table, Excel,
or (best) a database.

The example on the opposite page is an extract of two tables, showing the
“forward” and the “backward” traces between test cases and requirements,
respectively.

Book_samlet.indb 60 2/19/08 8:13:05 PM

2.4 Test Implementation and Execution 61

Requirements to Test Cases From Test Cases to Requirements

2.3.6 Metrics for Analysis and Design
Metrics to be defined for the monitoring and control of the test analysis and
design activities may include:

 Number of specified test conditions and high-level requirements
 over time
 Coverage achieved in the specification (for example, for code
 structures, requirements, risks, business processes), over time
 Number of defects found during analysis and design
 Other tasks commenced and completed over time, for example, in
 connection with test environment specifications
 Time spent on each task over time

This will, of course, have to be compared to the estimates and schedule of
the test analysis and design activities.

2.4 Test Implementation and Execution
The purpose of the test implementation is to organize the test cases in proce-
dures and/or scripts and to perform the physical test in the correct environ-
ment.

 The inputs on which this process is based are:
	 	 	Level test plan
	 	 	Test conditions and test design
	 	 	Other relevant documents
	 	 	The test object

 The activities are:
	 	 Organizing test procedures
	 	 Design and verify the test environment
	 	 Execute the tests

9.1.1.5 (8)
2.5 (45)
 9.1.2.1.a (14)
5.1 (10)
 9.1.2.1.b (15)
5.3 (13)
5.4 (14)
5.5 (12)

 3.1 (7)
 10.2.1.3.a (74)
 10.6.2.7.a (123)
 10.6.2.7.b (124)
 10.6.2.10.c (131)
3.2 (36)
 10.5.1.1 (98)
 10.5.1.3 (100)

This is the first
place from which
iterations may
occur

Book_samlet.indb 61 2/19/08 8:13:05 PM

62 Testing Processes

 Record the testing
 Check the test results

 The output consists of:
 Test specification
 Test environment
 Test logs
 Incident reports
 Tested test object

2.4.1 Input to Test Implementation and Execution
The input from the level test plan that we need for this process is:

 Scheduling and staffing for the activities
 Definition of the test object(s)
 Specification of test environment
 Entry criteria for the test execution
 Exit criteria, including coverage criteria

From the test analysis and design process we need the test specification
in its current state.

We might need other documentation, for example, a user manual, docu-
mentation of completion of preceding test work, and logging sheets. For the
actual execution of the test we obviously need the test object.

2.4.2 Documentation of Test Implementation and
 Execution
The test specification is finished in this process where the test procedures are
laid out. During this work the requirements concerning the test environment
are finalized.

The test environment must be established before the test execution may
start. In some cases the test environment is explicitly documented.

The test execution is documented in test logs. When failures occur these
should be documented in incident reports.

2.4.3 Activities in Test Implementation and Execution
2.4.3.1 Organizing Test Procedures
The low-level test cases should now be organized and assembled in test pro-
cedures and/or test scripts.
 The term “procedure” is mostly used when they are prepared for manual
test execution, while the term “script” is mostly used for automatically ex-
ecutable procedures.

Book_samlet.indb 62 2/19/08 8:13:05 PM

2.4 Test Implementation and Execution 63

The degree of detail in the procedures depends on who will be executing the test.
They should therefore always be written with the intended audience in mind.
Experienced testers and/or people with domain knowledge and knowledge
about how the system works will need far less details than “ignorant” testers.

What we need to specify here is the actual sequence in which the test
cases should be executed.

The documentation of a test procedure must at least include:

 Unique identification
 Description
 References to high-level test cases and/or to test conditions and/or

 directly to basis documentation to be covered by the procedure
 An explicit description of the preconditions to be fulfilled before
 the actual test execution can start
 Included low-level test cases

Test procedures may be organized in such a way that the execution of one
test procedure sets up the prerequisites for the following. It must, however,
also be possible to execute a test procedure in isolation for the purpose of con-
firmation testing and regression testing. The prerequisites for a test procedure
must therefore always be described explicitly.

Test procedures may be hierarchical, that is “call others,” for example,
generic test cases.

The test groups and the specification of their test procedures must be re-
visited to ensure that they are organized to give a natural flow in the test ex-
ecution. Remember that the production of the test specification is an iterative
process. We need to keep on designing and organizing test cases, test proce-
dures, and test groups until everything falls into place and we think we have
achieved the required coverage.

The organization in test procedures could be looked at as the execution
schedule. It could be fixed, but it could also be dynamic. For specific purposes,
especially for regression testing, some of the test procedures may be selected
and reorganized in other execution schedules that fit the specific purpose.

A test procedure should not include too many or too few test cases—a
maximum of 20 test cases and a minimum of 2–4 test cases is a good rule of
thumb.

The test procedure may also include facilities for logging the actual execu-
tion of the procedure.

There are many ways to lay out the specification of test procedures and
test cases. It is a good idea to set up a template in the organization.

Book_samlet.indb 63 2/19/08 8:13:06 PM

64 Testing Processes

Here is an example of a template for a test procedure. The procedure heading
contains fields for the required information and fields to allow the proce-
dure to be used for logging during test execution. The template for the cases
contains unique numbering of the case (within the procedure), input and
expected result, and a column for registration of the actual result to be used
for logging during execution.
Test procedure: n.n (n)

Note that the template indicates a unique identification of the test proce-
dure (n), and a number indicating its position among all the other test pro-
cedures (n.n).

To facilitate estimation the test designer is required to provide an estimate
of the execution time for manual execution of the test procedure.

Quality Assurance of the Test Specification
Before the test specification is used in the test execution it should be reviewed.
The review should ensure that the test specification is correct with respect to
the test basis, including any standards, that it is complete with respect to the
required coverage, and that it can be used by those who are going to execute
the test.

Apart from the obvious benefits of having the test specification reviewed,
it also has some psychological benefits. Usually we as testers review and test
the work products of the analysts and developers, and we deliver feedback in

Test procedure:

Purpose: This test procedure tests …
Traces:

Prerequisites: Set up …

Expected duration: x minutes

Execution information

Test date and time: Initials:

Test object identification: Result:

Case Input Expected result Actual result

1.

2.

Book_samlet.indb 64 2/19/08 8:13:06 PM

2.4 Test Implementation and Execution 65

the form of verbal or written review reporting and incident reports.
This may make us seem as those who are always the bearers of bad news

and ones who never make any mistakes ourselves. Getting the analysts and
developers to review our work will reverse those roles; it will make us learn
what it is like to receive feedback, and it will make the analysts and develop-
ers learn what it is like to deliver feedback and learn that even testers make
mistakes!

The review may be guided by a checklist, of which a very small example
is shown here:

 Is the test specification clear and easily understood?
 Is the test structure compatible with automated test?
 Is it easy to maintain?
 Is it easy for others to perform a technical review?

2.4.3.2 Test Environment Specification and Testing
The test environment is a necessary prerequisite for the test execution—with-
out a proper environment the test is either not executable at all or the results
will be open to doubt.

The environment is first outlined in the test plan based on the strategy.
The test plan also describes by whom and when the test environment is to be
created and maintained. Some additional requirements for the environment
may be specified in the test specification in the form of prerequisites for the
test procedures, and especially for test data. The exact requirements for test
data needed to execute test procedures may only be determined quite close to
the actual execution. It is very important that planning and facilities for set-
ting up specific test data are made well in advance of the execution.

The description of the test environment must be as specific as possible in
order to get the right test environment established at the right time (and at
the right cost). Beware: The setting up of the test environment is often a bottleneck
in the test execution process, mostly because it is insufficiently described,
underestimated, and/or not taken seriously enough. Either the environment
is not established in time for the actual test execution to begin and/or it is
not established according to the specifications. If the test environment is not
ready when the test object is ready for the test to be executed, it jeopardizes the
test schedule. If it is not correct, it jeopardizes the trustworthiness of the test.

 The descriptions of the test environment must cover:

 Hardware—to run on and/or to interface with
 Software—on the test platform and other applications
 Peripherals (printers including correct paper, fax, CD reader/burner)

Book_samlet.indb 65 2/19/08 8:13:07 PM

66 Testing Processes

 Network—provider agreements, access, hardware, and software
 Tools and utilities
 Data—actual test data, anonymization, security, and rollback facilities
 Other aspects—security, load patterns, timing, and availability
 Physical environment (room, furniture, conditions)
 Communication (phones, Internet, paper forms, paper, word proces-

 sor)
 Sundry (paper, pencils, coffee, candy, fruit, water)

Problems with the test environment may force testing to be executed in other less suit-
able environments. The testing could be executed in inappropriate competition
with other teams and projects. If we test in the development environment,
test results can be unpredictable for inexplicable reasons due to the instability
of this environment. In the worst case, testing is executed in the production
environment where the risk to the business can be significant.

The specific requirements for the test environment differ from test level
to test level. The test environment must, at least for the higher levels of test-
ing, be as realistic as possible, that is it should reflect the future production
environment.

The need for the environment to reflect the production environment is
not as pronounced for the lower test levels. In component testing and integra-
tion testing the specification must, however, include requirements concerning
any drivers and stubs.
 It may in some cases be too expensive, dangerous, or time-consuming to estab-
lish such a test environment. If this is the case the test may be un-executable
and other test methods, like inspection of the code, may be used to verify the
product.

As the testers we are, we have to verify that the test environment is com-
plete according to the specifications and that it works correctly before we start
to execute our test procedures. We must ensure that the test results we get
are valid, that is if a test passes, it is because the test object is correct, and if it
fails it is because the test object, and not the test environment, has a defect—and
vice versa.

2.4.3.3 Checking Execution Entry Criteria
Even though we are eager to start the test execution we should not be tempt-
ed to make a false start. We need to make sure that the execution entry criteria
are fulfilled.

If the test object has not passed the entry criteria defined for it, do not
start the test execution. You will waste your time, and you risk teaching the
developers or your fellow testers that they don’t need to take the entry criteria
seriously.

Book_samlet.indb 66 2/19/08 8:13:07 PM

2.4 Test Implementation and Execution 67

We of course also need to have the people taking part in the test execution
available, as specified in the test plan. The test executors must be appropri-
ately trained, and any stakeholders needed, for example, customers to witness
the execution, must be present and briefed.

Efficient and timely execution of the tests is dependent on the support
processes being in place. It is particularly important that the configuration
management is working well, because of the interfaces between the testing
process and the configuration management process, including:

 The ability to get the correct version of the test object, the test specifi-
 cation, and/or the ability to get the correct versions of any other

 necessary material
 The ability to be able to report the failures and other incidents found

 during the testing
 The ability to follow the progress of the failures and plan any neces-

 sary confirmation testing and regression testing
 The ability to register approval of successful removal of failures

Support processes are discussed in Chapter 1.

2.4.3.4 Test Execution
The execution of the tests is what everybody has been waiting for: the mo-
ment of truth!

In structured testing, as we have discussed earlier, in principle all the tes-
ters have to do during test execution is to follow the test specification and reg-
ister all incidents on the way. If the execution is done by a tool, this is exactly
what will happen.

We have taken great care in writing the test procedures, and it is impor-
tant to follow them. There are several reasons for this:

	 We need to be able to trust that the specified testing has actually
 been executed.
	 We need to be able to collect actual time spent and compare it with
 the estimates to improve our estimation techniques.
	 We need to be able to compare the progress with the plan.
	 We need to be able to repeat the tests exactly as they were executed
 before for the sake of confirmation testing and regression testing.
	 It should be possible to make a complete audit of the test.

None of this is possible if we don’t follow the specification, but omit or
add activities as we please.

There is nothing wrong with getting new ideas for additional test cases

Book_samlet.indb 67 2/19/08 8:13:07 PM

68 Testing Processes

to improve the test specification during the execution. In fact we neither can,
nor should, avoid it. But new ideas must go through the right channels, not
just be acted out on the fly. The right channel in this context is an incident
management system. New ideas for tests should be treated as incidents (en-
hancement requests) for the test. This is another reason why it is important to
have the configuration management system in place before the test execution
starts.

It is quite possible that some of the test execution time has been reserved
for performing experienced based testing, where we don’t use prespecified
test procedures. These techniques are discussed in Section 4.4.

2.4.3.5 Identifying Failures
For each test case we execute the actual result should be logged and compared
to the expected result, defined as part of the test case. This can be done in
various ways depending on the formality of the test. For fairly informal test-
ing a tick mark, √, is sufficient to indicate when the actual result matched
the expected result. For more formal testing, for example, for safety-critical
software, the authorities require that the actual result is recorded explicitly.
This could be in the form of screen dumps, included reports, or simply writing
the actual result in the log. This type of logging may also serve as part of the
proof that the test has actually been executed.

We need to be very careful when we compare the expected result with the
actual result, in order not to miss failures (called false positives) or report cor-
rect behavior as failures (called false negatives).

If the actual outcome does not comply with the expected outcome we
have a failure on our hands. Any failure must be reported in the incident man-
agement system. The reported incident will then follow the defined incident
life cycle. Incident reporting and handling is discussed in Chapter 7.

It is worth spending sufficient time reporting the incident we get. Too
little time spent on reporting an incident may result in wasted time during the
analysis of the incident. In the worst case it may be impossible to reproduce
the failure, if we are not specific enough in reporting the circumstances and
the symptoms.

Don’t forget that the failure may be a symptom of a defect in our work
products, like the test environment, the test data, the prerequisites, the ex-
pected result, and/or the way the execution was carried out. Such failures
should also be reported in order to gather information for process improve-
ment.

2.4.3.6 Test Execution Logging
As we execute, manually or by the use of tools, we must log what is going on.
We must record the precise identification of what we are testing and the test

Book_samlet.indb 68 2/19/08 8:13:07 PM

2.4 Test Implementation and Execution 69

environment and test procedures we use. We must also log the result of the
checking, as discussed above. Last but not least we must log any significant
event that has an effect on the testing.

The recording of this information serves a number of purposes. It is indis-
pensable in a professional and well-performed test.

The test execution may be logged in many different ways, often supported
by a test management tool. Sometimes the event registration is kept apart in
a test journal or diary.

The IEEE 829 standard suggests the following contents of a test log:

 Test log identifier

 1. Description of the test
 2. Activity and event entries

It is handy and efficient if the test specification has built-in logging facili-
ties that allow us to use it for test recording as we follow it for test execution.
An example of this is shown here.

The information about which test procedures have been executed and
with what overall result must be available at any given time. This information
is used to monitor the progress of the testing.

The identification of the test object and the test specification may be used
to ensure that possible confirmation testing after defect correction is done on
the correct version of the test object (the new version) using the correct ver-
sion of the test specification (the old or a new as the case might be).

The rationale—the tracing to the coverage items—can be used to calculate
test coverage measures. These are used in the subsequent checking for test
completion.

Information about who executed the test may be useful in connection
with defect finding, for example, if it turns out to be difficult for the developer
to reproduce or understand the reported failure.

Test Procedure: 3.6 (17)

Purpose: This test suite tests …

Rationale: User requirement 82

Prerequisites: The form …

Expected duration: 15 min.

Execution time: Log when Initials: Log who

System: Identify object etc. Result: Log overall result

Case Input Expected output Actual output

1. Enter... Log result

Book_samlet.indb 69 2/19/08 8:13:08 PM

70 Testing Processes

2.4.3.7 Confirmation Testing and Regression Testing
During testing we get failures. In most cases the underlying defects are cor-
rected and the corrected test object is handed over to the testers for confirma-
tion. This is the situation where we iterate in the test process and go back to
the test execution process. We go back to perform confirmation testing and
regression testing.

Confirmation testing and regression testing are important activities in
test execution. They can appear in all the test levels from component testing
to (one hopes rarely) acceptance testing and even during maintenance of a
product in operation.

These two types of change-related testing have one thing in common:
they are executed after defect correction. Apart from that, they have very dif-
ferent goals.

In the figure above the test object with a defect is shown to the left. The
defect has been unveiled in the testing. The defect has subsequently been cor-
rected and we have got the new test object back again for testing; this is the
one to the right.

What we must do now are confirmation testing and regression testing of
the corrected test object.

Confirmation Testing
Confirmation testing is the first to be performed after defect correction. It is
done to ensure that the defect has indeed been successfully removed. The test
that originally unveiled the defect by causing a failure is executed again and
this time it should pass without problems. This is illustrated by the dark rect-
angle in the place where the defect was.

Regression Testing
Regression testing may—and should—then be performed.

Regression testing is repetition of tests that have already been performed
without problems to ensure that defects have not been introduced or uncov-
ered as a result of the change. In other words it is to ensure the object under
test has not regressed.

This example shows a case of regression: A correction of a fault in a document
using the “replace all” of the word “Author” with the word “Speaker” had an
unintended effect in one of the paragraphs:

confirmation test

regression test

Courtesy of Grove
Consultants.

Book_samlet.indb 70 2/19/08 8:13:08 PM

2.5 Evaluating Exit Criteria and Reporting 71

“… If you are providing the Presentation as part of your duties with your
company or another company, please let me know and have a Speakerized
representative of the company also sign this Agreement.”

The amount of regression testing can vary from a complete rerun of all
the test procedures that have already passed, to, well, in reality, no regression
testing at all. The amount depends on issues such as:

 The risk involved
 The architecture of the system or product
 The nature of the defect that has been corrected

The amount of regression testing we choose to do must be justified in ac-
cordance with the strategy for the test.

Regression testing should be performed whenever something in or around
the object under testing has changed. Fault correction is an obvious reason.
There could also be others, more external or environmental changes, which
could cause us to consider regression testing.

An example of an environment change could be the installation of a new ver-
sion of the underlying database administration system or operating system.
Experience shows that such updates may have the strangest effects on sys-
tems or products previously running without problems.

2.4.4 Metrics for Implementation and Execution
Metrics to be defined for the implementation and execution of the test imple-
mentation and execution activities may include:

 Number of created test environments over time
 Number of created test data over time
 Number of created test procedures over time
 Number of initiated test procedures over time
 Number of passed test procedures over time
 Number of failed test procedures over time
 Number of passed confirmation tests over time
 Number of test procedures run for regression testing over time
 Time spent on the various tasks

This will, of course, have to be compared to the estimates and schedule of
the test implementation and execution activities.

2.5 Evaluating Exit Criteria and Reporting
Test execution, recording, control, retesting, and regression testing must be

Book_samlet.indb 71 2/19/08 8:13:09 PM

72 Testing Processes

continued until we believe that the exit criteria have been achieved. All the
way we need to follow what is going on.

The purpose of the test progress and completion reporting is to stay in
control of the testing and deliver the results of the testing activities in such
ways that they are understandable and useful for the stakeholders.

 The inputs on which this process is based are:
 Test plan
 Measurements from the test development and execution processes

 The activities are:
 Comparing actual measurements with estimates and planned values
 Reporting test results

 The output consists of:
 Presentation of test progress
 Test report

2.5.1 Input to Test Progress and Completion
 Reporting
The input from the level test plan that we need for this process is:

 Scheduling and staffing for the activities
 Exit criteria

2.5.2 Documentation of Test Progress and
 Completion Reporting
The documentation of the progress must be presented in various ways accord-
ing to who is receiving it. The audience may be the customer, higher manage-
ment, project management and participants, and testers.

Section 3.4.2 discusses presentation of monitoring information in great
detail.

At the completion of each test level a test summary report should be pro-
duced. The ultimate documentation of completion is the final test summary
report for the entire test assignment. The contents of a test summary report
are described in Section 3.2.3.5.

2.5.3 Activities in Test Progress and Completion
 Reporting
The activities related to the test progress and completion reporting are dis-
cussed in the sections referenced above.

This is the second
place from which
iterations may
occur

Book_samlet.indb 72 2/19/08 8:13:09 PM

2.5 Evaluating Exit Criteria and Reporting 73

2.5.3.1 Checking for Completion
A check against the test exit criteria is mandatory before we can say that the
testing is completed at any level. To warrant a stop it is important to ensure
that the product has the required quality.

The exit criteria are tightly connected to the coverage items for the test,
the test case design techniques used, and the risk of the product. The exit cri-
teria therefore vary from test level to test level.

Examples of exit criteria are:

 Specified coverage has been achieved
 Specified number of failures found per test effort has been achieved
 No known serious faults
 The benefits of the system as it is are bigger than known problems

 If the exit criteria are not met the test cannot just be stopped. An iteration
in the test process must take place: We have to go back to where something
can be repeated to ensure that the exit criteria are fulfilled.
 In most cases additional test procedures are required. This means that the
test analysis and design process must be revisited and more test cases and
procedures added to increase coverage. These test procedures must then be
executed, and the results recorded and checked. Finally the checking of the
exit criteria must be completed.
 Alternatively, the test plan may be revised to permit the relaxation (or
strengthening) of test exit criteria.
 Any changes to the test completion criteria must be documented, ideally having
first identified the associated risk and agreed to the changes with the cus-
tomer. Changing the test plan by adjusting the completion criteria should be
regarded as an emergency situation and be very well accounted for.
 When all test completion criteria are met and the report approved, the test
object can be released. Release has different meanings at different points in
the development life cycle:

 When the test is a static test the test object (usually a document)
 can be released to be used as the basis for further work.
 When the test is a test level for dynamic test the test object is
 progressively released from one test level to the next.
 Ultimately the product can be released to the customer.

2.5.4 Metrics for Progress and Completion Reporting
Metrics to be defined for the progress and control activities themselves may
include:

Book_samlet.indb 73 2/19/08 8:13:09 PM

74 Testing Processes

 Number of tasks commenced over time
 Task completion percentage over time
 Number of task completed over time
 Time spent on each task over time

This will of course have to be compared to the estimates and schedule of

the test progress and completion activities.

2.6 Test Closure
The purpose of the test closure activities is to consolidate experience and place
test ware under proper control for future use.

 The inputs on which this process is based are:
 Level test plan
 Test ware, including test environment

 The overall procedure consists of the activities:
 Final check of deliveries and incident reports
 Secure storage/handover of test ware
 Retrospection

 The output generated in this process is:
 Test experience report
 Configuration management documentation

2.6.1 Input to Test Closure
The input from the test plan that we need for this process is:

 Scheduling and staffing for the activities
 Planned deliveries

Furthermore we need all the test ware, both the test plans and specifica-
tion, we have produced prior to test execution, the test environment, and
the logs, incidents, and other reports we have produced during and after test
execution. We also need the experiences made by all the participants and other
stakeholders. These are often in the form of feelings and opinions of what has
been going on.

2.6.2 Documentation of Test Closure
The documentation from this process is an experience report or a retrospective
report from the retrospective meeting.

Other documentation will exist in the form it is specified in the organiza-
tion’s and/or customer’s configuration management system.

Book_samlet.indb 74 2/19/08 8:13:09 PM

2.6 Test Closure 75

2.6.3 Activities in Test Closure
2.6.3.1 Check Completion Again
Before we definitively close the door to the testing assignment we need to
make extra sure that we have met the part of the exit criteria. This is both in
terms of test coverage and deliveries we are to produce. If this is not in order
or any discrepancies not clearly documented we‘ll have to make sure it is be-
fore we proceed.

2.6.3.2 Delivering and Archiving Test Ware
The test ware we have produced are valuable assets for the organization and
should be handled carefully. For the sake of easy and economically sound
future testing in connection with defect correction and development of new
versions of the product we should keep the assets we have produced.

It is a waste of time and money not to keep the test ware we have produced.
If the organization has a well-working configuration management system

this is what we must use to safeguard the test ware.
If such a system does not exist, we must arrange with those who are taking

over responsibility for the product how the test ware must be secured. Those
taking over could, for example, be a maintenance group or the customer.

2.6.3.3 Retrospective Meeting
The last thing we have to do is to report the experiences we have gained dur-
ing our testing. The measurements we have collected should be analyzed and
any other experiences collected and synthesized as well. This must be done in
accordance with the approach to process improvement expressed in the test
policy and the test strategy, as discussed in Section 3.2.

This is also a very valuable activity since the results of the testing can be
the main indicators of where processes need to be improved. This can be all
processes, from development processes (typically requirements development)
over support processes (typically configuration management, not least for re-
quirements) to the test process itself.

It is important that we as testers finish our testing assignment properly by
producing an experience report.

For the sake of the entire process improvement activity, and hence the en-
tire organization, it is important that higher management is involved and asks
for and actively uses the test experience reports. Otherwise, the retrospective
meetings might not be held, because people quickly get engrossed in new
(test) projects and forget about the previous one.

Book_samlet.indb 75 2/19/08 8:13:10 PM

76 Testing Processes

2.6.4 Metrics for Test Closure Activities
Metrics to be defined for these activities may include number of tasks com-
menced over time, task completion percentage over time, number of tasks
completed over time, and time spent on each task over time as for the other
processes.

This will of course have to be compared to the estimates and schedule of
the test closure activities.

Questions
1. Which three elements must always be defined for a process?
2. How do processes depend on each other?
3. What are the five activities (subprocesses) in the generic test process?
4. To which test levels and other test types does the generic test process
 apply?
5. Which iterations are embedded in the generic test process?
6. From where can we get inspiration for test process definitions?
7. What it the input to the test planning process?
8. What is the table of contents for a test plan suggested by IEEE 829?
9. Why is early planning a good idea?
10. What can the test basis be for each of the dynamic test levels?
11. What should be covered in the test approach description?
12. What is completion criteria?
13. What are the typical test deliveries?
14. What is the structure of a test specification according to IEEE 829?
15. What are the parameters we use to plan the test?
16. What is a work breakdown structure?
17. What are the testing roles we need to handle all test activities?
18. What are the activities in the test analysis and design process?
19. What should be in a test design according to IEEE 829?
20. What test design would be relevant for a system test?
21. What is a test condition?
22. How are test cases created?
23. What must be defined for each test case according to IEEE 829?
24. What is the expected result in a test case?
25. What could be used if the expected result cannot be determined easily?
26. What requirements types should we expect to find in a requirements
 specification?
27. What are the recommendations for expressing requirements as state-
 ments?
28. What is traceability?
29. What are the activities in the test implementation and execution process?
30. What is a test procedure?

Book_samlet.indb 76 2/19/08 8:13:10 PM

Questions 77

31. What should be in a test procedure according to IEEE 829?
32. What are the guidelines for the length of a test procedure?
33. Why should test specifications be reviewed?
34. How can the test environment jeopardize the test?
35. What characterizes a valid test environment?
36. Why should test entry criteria be checked?
37. Which supporting process is it especially important to have in place be-
 fore test execution starts, and why?
38. Why should the test specification be followed during test execution?
39. What must be done when a failure is observed?
40. What information should be recorded for each executed test procedure?
41. What are confirmation testing and regression testing?
42. How much regression testing should be done?
43. When should regression testing be performed?
44. How should test progress and completion reporting be done?
45. Why should we check for completion?
46. What can be done if the completion criteria are not met?
47. What are the activities in the test closure process?
48. Why should testware be kept?
49. What is done in a retrospective meeting?
50. What is the ultimate purpose of the experience report?

Book_samlet.indb 77 2/19/08 8:13:10 PM

Book_samlet.indb 78 2/19/08 8:13:10 PM

3
CHAPTER

Contents

3.1 Business Value of
 Testing

3.2 Test Management
 Documentation

3.3 Test Estimation

3.4 Test Progress
 Monitoring and
 Control

3.5 Testing and Risk

Test Management

Test management is the art of planning and directing a test as-
signment to success. It is in many ways like project manage-

ment, and yet not quite the same.
Test management must be done in close cooperation with

project management, sometimes by the same person, sometimes
by different people.

The test manager is the link between the test team and the
development team and between the test team and higher man-
agement. It is therefore essential that the test manager is the am-
bassador of testing and truly understands how testing contributes
to the business goals.

3.1 Business Value of Testing
On the face of it, testing adds no value. The product under testing
is—in principle—not changed after the test has been executed.

But we are paid to test, so we must add some value to be in
business. And we do!

test

product product
(unchanged)

Value ?

79

Book_samlet.indb 79 2/19/08 8:14:03 PM

80 Test Management

The business value of testing lies in the savings that the organization can achieve
from improvements based on the information the testing provides.

Improvements can be obtained in three places:

 The product under development
 The decisions to be made about the product
 The processes used in both testing and development

It may, however, sometimes be difficult to understand and express what
the value is, both to ourselves and to others in the organization.

It is essential that test managers know and understand the value of test-
ing and know how to express it to others to make them understand as well.
Test managers must communicate the value to the testers, to other project
participants, and to higher management.

Testers are often engrossed in the testing tasks at hand and don’t see the
big picture they are a part of; higher management is often fairly remote from
the project as such and doesn't see the detailed activities.

3.1.1 Purpose of Testing
What testing does and therefore the immediate purpose of testing is getting infor-
mation about the product under testing. We could say (with Paul Gerrard, founder
of Aqastra): Testing is the intelligence office of the company.

The places we gather our raw data from are the test logs and the incident
reports, if these are used sensibly and updated as the testing and the incident
are progressing. From the raw data we can count and calculate a lot of useful
quantitative information.

A few examples of such information are:

 Number of passed test cases
 Coverage of the performed test
 Number and types of failures
 Defects corrected over time
 Root causes of the failures

Most of this information is “invisible” or indigestible unless we testers
make it available in appropriate formats. There is more about this in Section
3.5. This section also discusses how the information can be used to monitor
the progress of the development in general and the testing in particular.

Book_samlet.indb 80 2/19/08 8:14:03 PM

3.1 Business Value of Testing 81

3.1.2 The Testing Business Case
It is not straightforward to establish a business case for testing, since we don’t
know in advance what savings we are going to enable. We don’t know how
many defects in the product we are going to unveil.

A well-established way to express the value of testing for the product is
based on the cost of quality. This can be expressed as value of product im-
provement:

Value of product improvement =
(cost of failure not found – cost failure found) – cost of detection
To this we can add
Value of decision improvement =
(cost of wrong decision – cost of right decision) – cost of getting decision
basis
Value of process improvement =
(cost using old process – cost using better process) – cost of process
improvement

These three aspects add up to form the entire business case for testing.
The aim is to get as high a value as possible.

A value may be expressed either quantitatively or qualitatively. Quantita-
tive values can be expressed in actual numbers—euros, pounds, or dollars or
numbers of something, for example. Qualitative values cannot be calculated
like that, but may be expressed in other terms or “felt.”

3.1.2.1 The Value of Product Improvement
The value of product improvement is the easiest to assess.

One goal of all development is reliability in the products we deliver to the
customers. Reliability is the probability that software will not cause the failure
of a system for a specified time under specified conditions.

A product’s reliability is measured by the probability that faults material-
ize in the product when it is in use.

No faults
= 100% reliability

Many faults
= x% reliability

Book_samlet.indb 81 2/19/08 8:14:04 PM

82 Test Management

The less failures that remain in the product we release, the higher is the
reliability of the product and the lower the risk of the product failing and
thereby jeopardizing its environment. Project risks range from ignorable to
endangering the lives of people or companies. There is more about risk man-
agement in Section 3.6.

The earlier we get a defect removed the cheaper it is. Reviews find defects
and dynamic testing finds failures, and this enables the correction of the un-
derlying defects.

The cost of the defect correction depends on when the defect is found.
Defects found and corrected early are much cheaper to correct than defects
found at a later point in time. Research shows that if we set the cost of cor-
recting a defect found in the requirements specification to 1 unit, then it will
cost 10 units to make the necessary correction if the defect is first found in
the design.

If the defect remains in the product and is not found until encountered
as a failure in dynamic test, it costs 100 units to correct it. The failures found
during development and testing are called internal failures, and they are rela-
tively cheap.

If the customer gets a failure in production—an external failure—it may
costs more than 1,000 units to make the necessary corrections, including the
cost that the customer may incur. The analysts and programmers who can/
must correct the defects may even be moved to new assignments, which are
then in turn delayed because of (emergency) changes to the previous product.

The basic reason for this raise in cost is that defects in software do not
go away if left unattended; they multiply. There are many steps in software

100

10
1

Requirement Design Test Production
specification

1000,

This graph is provided
by Grove Consultants,
UK; other sources for
similar research results
are IBM and Brüel &
Kjær, Denmark.

Book_samlet.indb 82 2/19/08 8:14:04 PM

3.1 Business Value of Testing 83

development from requirements specification to manufacturing and for each
step a defect can be transformed into many defects.

There is some element of estimation in preparing the business case for
product improvement. Many organizations don’t know how many defects to
expect, how much it costs to find defects, and how much it costs to fix them,
or how much it would have cost to fix them later. The more historical data
about the testing and defect correction an organization has, the easier it is to
establish a realistic business case.

Let’s look at a few calculation examples.
If we assume that it costs 4 units to correct a defect in the requirements

phase, and 6 units to detect a defect or a failure, we can make calculations
like:

Value of finding a defect in system testing rather than in production at the
customer’s site = (4,000 – 400) – 6 = 3,594 units

Value of finding a defect in requirements specification rather than in sys-
tem testing = (400 – 4) – 6 = 390 units

Other research show that about 50% of the defects found in the entire life
of a product can be traced back to defects introduced during the requirements
specification work. This is illustrated in the following figure where the origins
of defects are shown.

Requirements
specification

Final
product

Design

Test
specification

User
manual

Components

Fault

Book_samlet.indb 83 2/19/08 8:14:05 PM

84 Test Management

If we combine these two pieces of research results we have a really strong
case for testing, and for starting testing early on in the project!

To get the full value of the test, it should start as early as possible in the course of a
development project, preferably on day 1!

3.1.2.2 The Value of Decision Improvement
From the point of view of decision making such as decisions concerning re-
lease (or not) of a product the confidence in the product and quality of the
decisions are proportional to the quality and the amount of the information
provided by testing. As testing progresses, more and more information is
gathered and this enhances the basis for the decisions.

The more knowledge the decision makers have about what parts of the
product have been tested to which depth—coverage—and which detected
defects have been removed and which are still remaining, the more informed
are the decisions made. The value of more informed decisions rather than
less informed decisions is qualitative; it is very rarely possible to calculate this
quantitatively.

It follows from the concept of test as an information collection activity
that it is not possible to test good quality into a product. But the quality of the
testing reflects in the quality of the information it provides.

Good testing provides trustworthy information and poor testing leave us
in ignorance.

If the starting point
is a good product, a good
test will provide infor-
mation to give us confi-
dence that the quality is
good.

If the starting point
is a poor product, a good
test will reveal that the
quality is low.

Requirements
56%Design

27%

Code
7%

Other
10%

Requirements
56%Design

27%

Code
7%

Other
10%

Poor
code

Poor
test

Un-
known
quality

Good
code

Known
quality

Good
test

Book_samlet.indb 84 2/19/08 8:14:05 PM

3.2 Test Management Documentation 85

But if the testing is poor we will not know if we have a good or a poor
product.

The line from “poor code” to “good test” is dashed, because poor coding
and good testing is not often seen together. Our goal as professional test prac-
titioners is to reduce the occurrence of poor testing.

More important decisions may also be based on the information from
testing. A test report with documentation of the test and the test results can
be used to prove that we fulfilled contractual obligations, if needed. It may
even in some (one hopes rare) cases provide a judicial shield for the company
in that it provides evidence against suits for negligence or the like. This is of
qualitative value to the business.

3.1.2.3 The Value of Process Improvement
From the process improvement point of view the information gained from testing
is invaluable in the analysis of how well processes fit and serve the organiza-
tion. The results of such analysis can be used to identify the process that could
be the subject for process improvement. The process to improve may be both
the testing process and other processes.

As time goes by the information can tell us how a process improvement
initiative has worked in the organization.

When the testing process improves, the number of failures sent out to the
customers falls, and the organization’s reputation for delivering quality prod-
ucts will rise (all else being equal). The value of this is qualitative.

There is more about process improvement in Chapter 8.

3.2 Test Management Documentation
3.2.1 Overview
Proper test management requires that information about the decisions that
test management makes is available and comprehensive to all stakeholders.
These decisions are normally captured in a number of documents.

The test management documentation comprises:

 Test policy
 Test strategy
 Project test plan
 Level test plan

The test management documentation belongs to different organizational
levels as shown in the next figure.

Book_samlet.indb 85 2/19/08 8:14:06 PM

86 Test Management

The test policy holds
the organization’s phi-
losophy toward software
testing.

The test strategy is
based on the policy. It
can have the scope of an
organizational unit or a
program (one or more
similar projects). It con-
tains the generic require-
ments for the test for the
defined scope.

A master test plan is for a particular project. It makes the strategy opera-
tional and defines the test levels to be performed and the testing within those
levels.

A level test plan is for a particular test level in a particular project. It pro-
vides the details for performing testing within a level.

The presentation of this documentation depends on the organization’s
needs, general standards, size, and maturity. The presentation can vary from
oral (not recommended!) over loose notes to formal documents based on or-
ganizational templates. It can also vary from all the information being pre-
sented together in one document, or even as part of a bigger document, to it
being split into a number of individual documents.

The more mature an organization is the more the presentation of the test
management documentation is tailored to the organization’s needs. The way
the information is presented is not important; the information is.

3.2.2 Higher Management Documentation
Higher management, that is management above project managers and test
managers, is responsible for the two types of test management documenta-
tion discussed in this section. The documentation is used by everybody in the
organization involved in testing.

3.2.2.1 Test Policy
The test policy defines the organization’s philosophy toward software test-
ing. It is the basis for all the test work in the organization. A policy must
be behavior-regulating in the good way—it is like a lighthouse for all the testing
activties. And like every lighthouse has its own signal, every organization must
have its own policy, tailored to its specific business needs.

The test policy must be short and to the point.
It is the responsibility of the top management to formulate the policy. It

may, however, be difficult for top management if managers are not familiar

• Test policy

• Test strategy

• Project test plan
• Phase test plan

Organization

Program
Project Project

Program
Project

Book_samlet.indb 86 2/19/08 8:14:07 PM

3.2 Test Management Documentation 87

with professional testing, so it is often seen that the IT department (or equiva-
lent) steps in and develops the test policy on behalf of the management.

The test policy must include:

1. Definition of testing
2. The testing process to use
3. Evaluation of testing
4. Quality targets
5. Approach to test process improvement

The test policy applies to all testing. The policy must cover all test targets.
This means that there must be a policy for:

 Testing new products
 Change-related testing
 Maintenance testing

Test Policy; Definition of Testing
The definition of testing is a brief statement formulating the overall purpose
of the test in the organization.

“Checking that the software solves a business problem”
“Activity to provide information about the quality of the products”
“A tool box for minimization of the product risks”

Test Policy; The Testing Process
The testing process is an overview of the activities to be performed or a refer-
ence to a full description of the testing process.

“Development and execution of a test plan in accordance with depart-
mental procedures and user requirements found on the intranet”

Another possibility is a reference to the test process defined in standards
or other literature, for example the ISTQB syllabus, the test process on which
this book based. This test process was described in detail in Chapter 2.

Test Policy; Evaluation of Testing
The evaluation of testing is the measurement to be made in order for the qual-
ity of the testing to be determined.

Book_samlet.indb 87 2/19/08 8:14:07 PM

88 Test Management

“The number of failures reported by the field is measured every three
months.”
“The cost of the fault correction done after release is measured.”
“The customer satisfaction is measured once a year by means of a question-
naire sent out to 200 selected customers.”

Test Policy; Quality Targets
The quality targets to be achieved should be expressed so that the measure-
ments can be used to see if we reach the goals.

Examples are:
“No more than one high severity fault per 1,000 lines of delivered code to

be found in the first six months of operation.”
“The overall effectiveness of the test must be over 98% after the first three

months in production.”
“The customers must not be reporting more than three severity 1 failures

during the first year of use.”
“The system must not have a breakdown lasting longer than 15 minutes

during the first six months in production.”

Test Policy; Approach to Test Process Improvement
The organizational approach to test process improvement is the process to be
used for learning from experiences. This would often be the same as the orga-
nization's general approach to software process improvement, but there might
be a specific policy for the testing process improvement.

“A postproject workshop where all the observations during the test process are
collected shall be held within the first month after turnover to production.”

“Failure reports shall be analyzed to determine any trends in the faults
found in system test.”

“The root cause shall be found for every severity 1 and 2 fault found dur-
ing testing, and improvement actions shall be determined.”

3.2.2.2 Test Strategy
The Latin word “stratagem” means a plan for deceiving an enemy in war. The
enemy here is not the developers, but rather the defects! The strategy is based
on the test policy and should of course be compliant with it. The strategy out-
lines how the risks of defects in the product will be fought. It could be said
to express the generic requirements for the test. The strategy comprises the
navigation rules for the testing.

Book_samlet.indb 88 2/19/08 8:14:07 PM

3.2 Test Management Documentation 89

The test strategy is high-level, and it should be short. It should also be
readily available to all with a stake in the testing within the scope of the strat-
egy. The strategy could be issued in a document, but it would be a good idea to
present it in table form on a poster or on the intranet in the organization.

A test strategy must be for a specified scope. The scope may be all the
projects in an entire organization, a specific site or department, or a program
(a number of similar projects).

The overall test strategy may be chosen among the following possible ap-
proaches to the testing:

 Analytical—Using for example a risk analysis as the basis
 Model-based—Using for example statistical models for usage
 Consultative—Using technology guidance or domain experts
 Methodical—Using for example checklists or experience
 Heuristic—Using exploratory techniques
 Standard-compliant—Using given standards or processes
 Regression-averse—Using automation and reuse of scripts

There is nothing wrong with mixing the approaches. They address differ-
ent aspects of testing and more approaches can support each other.

We could, for example, decide:
The component test shall be structured in compliance with the tool used

for component testing.
The component integration testing shall be bottom-up integration based

on a design model and in compliance with standard xxx.
The system test shall be risk-based and structured and the initial risk

analysis shall be supplemented with exploratory testing.

The decisions about approaches or overall strategies have a great influ-
ence on some of the decisions that have to be made for specific topics in the
strategy.

Remember that the strategy must be short—the test approach is to be
refined and detailed in the test plans.

The test strategy should not be “once-written-never-changed.” As the ex-
periences gained from finished testing activities are collected and analyzed,
the results in terms of test process improvement initiatives must constantly
be considered when the test strategy is formulated.

Book_samlet.indb 89 2/19/08 8:14:07 PM

90 Test Management

A test strategy for a defined scope could contain the following information:

Test strategy identifier

1. Introduction
2. Standards to use
3. Risks to be addressed
4. Levels of testing and their relationships
 For each level, as appropriate
 4.1 Entry criteria
 4.2 Exit criteria
 4.3 Degree of independence
 4.4 Techniques to use
 4.5 Extent of reuse
 4.6 Environments
 4.7 Automation
 4.8 Measurements
 4.9 Confirmation and regression testing
5. Incident management
6. Configuration management of testware
7. Test process improvement activities

Approvals

The numbered topics are indented as sections in the strategy. The identi-
fier and the approvals are information about the strategy usually found on
the front page.

The strategy identifier is the configuration management identification infor-
mation for the strategy itself. It could be formed by the:

 Name of the strategy
 Organizational affiliation
 Version
 Status

This should adhere to the organization´s standards for configuration
management, if there is one.

Strategy; Introduction
The introduction sets the scene for the strategy. It contains general information of
use to the reader.

The introduction is usually the most organization specific chapter of the plan. It
should be based on the organization’s own standard. It should in any case cover:

Book_samlet.indb 90 2/19/08 8:14:08 PM

3.2 Test Management Documentation 91

 Purpose of the document
 Scope of the strategy
 References to other plans, standards, contracts, and so forth
 Readers' guide

Strategy; Standards to Be Complied With
In this section references to the standard(s) that the test must adhere to are
provided.

Standards may be both external to the organization and proprietary stan-
dards.

Standards are very useful. Many people with a lot of experience have contrib-
uted to standards. Even though no standard is perfect and no standard fits
any organization completely standards can facilitate the work by providing
ideas and guidelines.

The more standards it is possible to reference the easier the work in the
strategy, the planning, and the specification. Information given in standards
must not be repeated in specific documents, just referenced.

IEEE 829, Test Documentation.
“Test-Nice”—the company standard for test specifications.

Some appropriate standards are discussed in Chapter 8.

Strategy; Risks
The basis for the strategy can be the product risks to mitigate by the testing.
Appropriate project risks may also be taken into consideration.

The strategy must include a list of the relevant risks or a reference to such
a list.

Risks in relation to testing are discussed in Section 3.8.

Strategy; Test Levels and Their Relationships
The typical test strategy will include a list and description of the test levels
into which the test assignments within the scope should be broken.

The levels can for example be:

 Component testing
 Component integration testing
 System testing
 System integration testing
 Acceptance testing

The levels are described in detail in Chapter 1.

Book_samlet.indb 91 2/19/08 8:14:08 PM

92 Test Management

The following strategy topics must be addressed for each of the levels that
the strategy includes. It is a good idea to give a rationale for the decisions
made for each topic, if it is not obvious to everybody.

Strategy; Level Entry Criteria
This is a description of what needs to be in place before the work in the test
level can start.

The strictness of the entry criteria depends on the risk: The higher the risk
the stricter the criteria.

An entry criterion for the system test could be that the system requirements
specification has passed the first review.

Strategy; Level Exit Criteria
The testing exit or completion criteria are a specification of what needs to be
achieved by the test. It is a guideline for when to stop the testing—for when
it is “good enough.” It is a description of what needs to be in place before the
work in the test level can be said to be finished.

Testing completion criteria represent one of the most important items in
a comprehensive test strategy, since they have a great influence on the subse-
quent testing and the quality of a whole system.

Some completion criteria are closely linked to the chosen test case design
techniques; some are linked to the progress of the test.

The strategy does however not need to be very specific. The completion
criteria will be detailed and made explicit in the test plans. A detailed discus-
sion of completion criteria is found in Section 3.2.3.3.

The strictness of the completion criteria depends on the risk as described
above.

Descriptions of the strategy for completion criteria could for example be:

Component test: Decisions coverage must be between 85% and 100% depen-
dent on the criticality of the component. No known faults may be outstand-
ing.

System test: At least 95% functional requirements coverage for priority
1 requirements must be achieved. No known priority 1 failures may be out-
standing.

The test report has been approved by the project manager.

Strategy; Degree of Independence
Testing should be as objective as possible. The closer the tester is to the pro-
ducer of the test object, the more difficult it is to be objective.

The concept of independence in testing has therefore been introduced.

Book_samlet.indb 92 2/19/08 8:14:08 PM

3.2 Test Management Documentation 93

The degree of independence increases with the “distance” between the
producer and the tester. These degrees of independence in testing have been
defined:

1. The producer tests his or her own product
2. Tests are designed by another nontester team member
3. Tests are designed by a tester who is a member of the development

 team
4. Tests are designed by independent testers in the same organization
5. Tests are designed by organizationally independent testers (consul-

 tants)
6. Tests are design by external testers (third-party testing)

As it can be seen in the list the point is who designs the test cases. In
structured testing the execution must follow the specification strictly, so the
degree of independence is not affected by who is executing the test. In testing
with little or no scripting, like exploratory testing, the independence must be
between producer and test executor.

The strategy must determine the necessary degree of independence for
the test at hand. The higher the risk the higher the degree of independence.

There is more about independence in testing in Section 10.4.

Strategy; Test Case Design Techniques to Be Used
A list of the test case design techniques to be used for the test level should be
provided here. The choice of test case design techniques is very much depen-
dent on the risk—high risk: few, comprehensive techniques to choose from;
low risk: looser selection criteria.

Test case design techniques could be equivalence partitioning, boundary value
analysis, and branch testing for component testing.

Test case design techniques are described in great detail in Chapter 4.

Strategy; Extent of Reuse
Reuse can be a big money and time saver in an organization.

Effective reuse requires a certain degree of maturity in the organization.
Configuration management needs to be working well in order to keep track of
items that can be reused.

This section must provide a description of what to reuse under which
circumstances.

Book_samlet.indb 93 2/19/08 8:14:09 PM

94 Test Management

Work product for reuse could, for example, be:

 Generic test specifications
 Specific test environment(s)
 Test data

Strategy; Environment in Which the Test Will Be Executed
Generic requirements for the test environment must be given here. The spe-
cific environment must be described in the test plan, based on what the strat-
egy states.

The requirements for the test environment depend very much on the de-
gree of independence and on the test level at which we are working.

We could for example find:
Component testing: The developer’s own PC, but in a specific test area.
System test: A specific test environment established on the test compa-

ny’s own machine and reflecting the production environment as closely as
possible.

Strategy; Approach to Test Automation
This is an area where the strategy needs to be rather precise in order for tool
investments not to get out of hand.

Technical people—including testers—love tools. Tools are very useful and
can ease a lot of tedious work.

Tools also cost a lot both in terms of money over the counter and in terms of
time to implement, learn, use, and maintain. Furthermore, no single tool cov-
ers all the requirements for tool support in a test organization, and only a few
tools are on speaking terms. It can be costly and risky, or indeed impossible to
get information across from one tool to another.

It is important that the strategy includes a list of already existing testing
tools to be used, and/or guidelines for considerations of implementation of
new tools.

Test tools are described in Chapter 9.

Strategy; Measures to Be Captured
In the test policy it has been defined how the test shall be evaluated. It has
also been defined what the approach to process improvement is. This governs
the measures we have to collect.

Measures are also necessary to be able to monitor and control the progress
of the testing. We need to know how the correspondence is between the real-
ity and the plan. We also need to know if and when our completion criteria
have been met.

Book_samlet.indb 94 2/19/08 8:14:09 PM

3.2 Test Management Documentation 95

Based on this, this section must contain a definition of all the metrics for
testing activities. Descriptions of metrics include scales, ways of capturing the
measurements, and the usage of the collected information.

Metrics and measurements are discussed in general in Section 1.3.

Strategy; Approach to Confirmation Testing and
Regression Testing
Confirmation testing is done after fault correction to confirm that the fault
has indeed been removed.

Regression testing should be done whenever something has changed in
the product. It is done to ensure that the change has had no adverse effect on
something that was previously working OK. Regression testing should follow
any confirmation test; it should also for example follow an upgrade of the
operation system underlying the product. The amount of regression testing to
perform after a change is dependent on the risk associated with the change.

This section must outline when and how to perform confirmation testing
and regression testing in the test level it is covering.

System testing: Re-execute the test case(s) that identified the fault and rerun
at least 1/3 of the rest of the already executed test cases. The choice of test
cases to rerun must be explained.

Strategy; Approach to Incident Management
It is hoped that a reference to the configurations management system is suf-
ficient here.

If this is not the case it must be described how incidents are to be reported
and who the incident reports should be sent to for further handling.

Close cooperation with the general configuration management function in the orga-
nization is strongly recommended on this. There is no need to reinvent procedures
that others have already invented.

Strategy; Approach to Configuration Management of
Testware
Configuration management of testware is important for the reliability of the
test results. The test specification and the test environment including the data
must be of the right versions corresponding to the version of product under
testing. A good configuration management system will also help prevent ex-
tra work in finding or possibly remaking testware that has gone missing—
something that happens all too often in testing.

Configuration management is a general support process, and if a con-
figuration management system is in place this is of course the one the testers
should use as well, and the one to which the strategy should refer.

Fault correction
is NOT part of
the test process.

Book_samlet.indb 95 2/19/08 8:14:09 PM

96 Test Management

If such a system is not in place the approach to local testing configuration
management must be described. Configuration management is discussed in
Section 1.1.3.

Strategy; Approach to Test Process Improvement
This could be a refinement of the approach described in the policy; see Section
3.1.1.5.

3.2.3 Project Level Test Management Documentation
The two types of test management documentation discussed in this section
belong to a particular project. The master test plan should be produced by the
person responsible for testing on the project, ideally a test manager. The level
test plans should be produced by the stakeholder(s) carrying the appropriate
responsibility. This could be anybody from a developer planning a component
test to the test manager planning the system or acceptance test.

3.2.3.1 Master Test Plan
The master test plan documents the implementation of the overall test strat-
egy for a particular project. This is where the strategy hits reality for the first
time. The master test plan must comply with the strategy; any noncompliance
must be explained.

The master test plan must be closely connected to the overall project
plan, especially concerning the schedule and the budget! The master test plan
should be referenced from the project plan or it could be an integrated part
of it.

The master test plan has many stakeholders and missions, and it must
at least provide the information indicated in the following list to the main
stakeholders.

The plan
outlines the
journey.

Book_samlet.indb 96 2/19/08 8:14:10 PM

3.2 Test Management Documentation 97

Stakeholder Information
All Test object = scope of the test for each level
 Involvement in the testing activities
 Contribution to the testing activities
 Relevant testing deliverables (get/produce)
Management Business justification and value of testing
 Budget and schedule
 Test quantity and quality
Development Expectation concerning delivery times
 Entry criteria for deliverables
Test team Test levels
 Schedule
 Test execution cycles
 Suspension criteria and exit criteria
Customer Test quantity and quality

All stakeholders in the master test plan must agree to the contents according to
their interest and involvement—otherwise the plan is not valid!

As mentioned previously, the way the information in the master test plan
is presented is not important; the information is.

The detailed structure and contents of a master test plan are discussed in
Section 3.2.3.3.

3.2.3.2 Level Test Plan
A level test plan documents a detailed approach to a specific test level, for
example a component test or acceptance test. The level test plan describes
the implementation of the master test plan for the specific level in even more
precise detail. For instance, it would normally include a sequence of test
activities, day-to-day plan of activities, and associated milestones.

The size of a level test plan depends on the level it covers—a component
test plan for single components may be just 5–10 lines; system test plans may
be several pages.

As for the master test plan it is vital to include all relevant stakeholders in
the planning process and to get their sign-off on the plan.

3.2.3.3 Test Plan Template
The structure of the test plans, both the master test plan and any level test
plans, should be tailored to the organization’s needs.

In order not to start from scratch each time it is, however, a good idea to
have a template. A template could be based on the IEEE 829 standard. This
standard suggests the following contents of a test plan:

Book_samlet.indb 97 2/19/08 8:14:10 PM

98 Test Management

Test plan identifier

1. Introduction (scope, risks, and objectives)
2. Test item(s) or test object(s)
3. Features (quality attributes) to be tested
4. Features (quality attributes) not to be tested
5. Approach (targets, techniques, templates)
6. Item pass/fail criteria (exit criteria including coverage criteria)
7. Suspension criteria and resumption requirements
8. Test deliverables (work products)
9. Testing tasks
10. Environmental needs
11. Responsibilities
12. Staffing and training needs
13. Schedule
14. Risks and contingencies

Test plan approvals

The numbered topics are intended as sections in the plan; the identifier
and the approvals for the plan are usually found on the front page.

The test plan identifier is the configuration management identification infor-
mation for the test plan itself. It could be formed by the

 Name of the plan
 Organizational affiliation
 Version
 Status

This should adhere to the organization's standards for configuration man-
agement, if there is one.

Test Plan; Introduction
The introduction sets the scene for the test plan as a whole. It contains general in-
formation of use to the reader.

The introduction is usually the most organization-specific chapter of the plan.
It should be based on the organization’s own standard. It should in any case cover:

 Purpose of the document
 Scope of the plan, possibly including intended readership
 References to other plans, standards, contracts, and so forth
 Definitions
 Abbreviations

Book_samlet.indb 98 2/19/08 8:14:10 PM

3.2 Test Management Documentation 99

 Typographical conventions used
 Readers' guide

It is important to get the references precise and correct. Test planning is
influenced by many aspects, including the organization’s test policy, the test
strategy, the development or maintenance plan, risks, constraints (time, mon-
ey, resources), and the test basis and its availability and testability. References
must be made to all this information—and it must be respected.

If this chapter gets too voluminous you can place some of the information
in appendices.

Test Plan; Test Item(s)
Here the test object(s) or item(s) and additional information are identified
as precisely and explicitly as possible. The additional information may be the
appropriate source specification, for example detailed design or requirements
specification, and helpful information such as the design guide, coding rules,
checklists, user manual, and relevant test reports.

The test object depends on whether the plan is the master test plan or a
level test plan, and in the latter case of the specific test level the plan is for.

Product XZX V2.3, based on XZX System Requirements Specification V.4.2.
The individual component: pre_tbuly V2.3.

Test Plan; Features to Be Tested
Within the scope of the test item(s), an overview of the features to be tested is
provided along with references to where the test is specified, or will be speci-
fied as the case may be. Features include both functional and nonfunctional
quality attributes.

The decision about which features are to be tested and which are not is
based on the applicable test strategy, the identified risks, and the mitigation
activities for them. The identification of the features to be tested is also closely
linked to the specified coverage items.

All functional requirements, specified in System test specification STS-XX.doc
must be covered in this test.

All methods in the classes are to be tested in the component testing.

Test Plan; Features Not to Be Tested
To set the expectations of the stakeholders correctly, it is just as important to
state what features are not tested as it is to state which are.

With regards to what might be expected to be tested in relation to the test
item(s), we must provide a list of the features not to be tested. A reason must
be given for each of the features omitted.

Book_samlet.indb 99 2/19/08 8:14:10 PM

100 Test Management

Performance testing is not part of this test because it will be carried out by
third-party company PTESTIT. They are experts in performance testing.

In this component the function M-bladoo is not tested. It is too costly
to simulate the error situation that it handles. A formal inspection has been
performed on the code.

Test Plan; Approach
The test approach must be based on the strategy for the test at hand. This
section expands the approach and makes it operational.

The approach must at least cover:

 The test methods and test techniques to use
 The structure of the test specification to be produced and used
 The tools to be used
 The interface with configuration management
 Measurements to collect
 Important constraints, such as availability or “fixed” deadline
 for the testing we are planning for.

Test Plan; Item Pass/Fail Criteria
The item pass/fail criteria are the American counterpart to what we Euro-
peans call completion criteria. The completion criteria are what we use to
determine if we can stop the testing or if we have to go on to reach the objec-
tive of the testing.

Examples of appropriate completion criteria for some test levels are:

 Component testing
	 100% statement coverage
	 95% decision coverage
	 No known faults
 Acceptance testing
	 100% business procedure coverage
	 No known failures of criticality 1

Test Plan; Suspension Criteria and Resumption Requirements
Sometimes it does not make sense to persevere with the test execution. It
can be a very good idea to try to identify such situations beforehand. In this
section in the plan, the circumstances that may lead to a suspension of the
test for a shorter or longer period are described.

Book_samlet.indb 100 2/19/08 8:14:11 PM

3.2 Test Management Documentation 101

More than 20% of the time is spent on reporting banal failures, caused by
faults that should have been found in an earlier test phase.

It must also be decided and documented what must be fulfilled for the
test to be resumed.

Evidence of required coverage of component testing must be provided.

Finally it should be stated which test activities must be repeated at re-
sumption. Maybe every test case must be re-executed; maybe it is OK to pro-
ceed from where we stopped.

Test Plan; Test Deliverables
The deliverables are a listing and a brief description of all the documentation,
logs, and reports that are going to be produced in the test process at hand.
Everything must be included for the purpose of estimation and the setting of
expectations.

Example of test deliverables are:

 Test plans
 Test specifications
 Test environment
 Logs, journals, and test reports
 Release documentation for the test object

Test Plan; Testing Tasks
This section in the plan is the work breakdown structure of the test process
at hand. If we use the test process used here, it is analysis, design, implemen-
tation, execution, evaluation, reporting, and closure, all broken down into
more detailed activities in an appropriate work breakdown structure. When
defining the test tasks in detail it is important to remember and mention ev-
erything. Even the smallest task, which may seem insignificant, may have a
significant influence on the schedule.

The tasks, together with resources and responsibilities, are input items to
the test schedule.

Test Plan; Environmental Needs
The test environment is a description of the environment in which the test is
to be executed. It is important to be as specific as possible in order to get the
right test environment established at the right time (and at the right cost).

Book_samlet.indb 101 2/19/08 8:14:11 PM

102 Test Management

Test Plan; Responsibilities
In this section we must describe who is responsible for what. The distribution
of testing roles or tasks on organizational units or named people can be shown
in a responsibility distribution matrix (RDM). This is a simple two-dimen-
sional matrix or table. On one axis we have organizational units or people, on
the other axis we have roles or tasks. In the cross-field we can indicate the
type of involvement an organizational unit has for the role.

A completed responsibility distribution matrix might look like this.

Test Plan; Staffing and Training Needs
The necessary staff to fulfill the roles and take on the responsibilities must be
determined and described here.

Each of the roles requires a number of specific skills. If these skills are
not available in the people you have at your disposal, you must describe any
training needs here. The training should then be part of the activities to put
in the schedule.

Test Plan; Schedule
In the scheduling, the tasks, the staffing, and the estimates are brought
together and transformed into a schedule. Risk analysis may be used to pri-
oritize the testing for the scheduling: the higher the risk, the more time for
testing and the earlier the scheduled start of the testing task.

Scheduling testing is just like any other project scheduling. The result
may be presented graphically, typically as Gantt diagrams.

1 2 3 4 5 6

Test leader R C I I I I

Test department C R R P P R

Quality assurance C C R - - I

Sales/marketing C C C - - P

The customer C C C - R P

Method department I I P R - -

Responsible Performing Consulted Informed

Where:
1. Test management
2. Test analysis
 and design
3. Test environment
4. Test tools
5. Test data
6. Test execution

Id Opgavenavn Varighed

1 Opgave 1 15 dage

2 Opgave 2 10 dage

3 Opgave 3 75 dage

4 Opgave 4 15 dage

5 Opgave 5.1 20 dage

6 Opgave 5.2 20 dage?

7 Opgave 5.3 100 dage

-3 -1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
01. februar 01. marts 01. april 01. maj 01. juni 01. juli 01. august 01. september 01. oktober 01. november

Book_samlet.indb 102 2/19/08 8:14:12 PM

3.2 Test Management Documentation 103

Test Plan; Risks and Contingencies
This is the management of the risks specifically connected to the task of test-
ing itself, not to the object under test.

The risks to consider here are hence:

 Project risks—What can jeopardize the plan
 Process risks—What can jeopardize the best possible performance of

 the tasks

The risks must be identified, analyzed, mitigated as appropriate, and fol-
lowed up like any other risk management task.

Risk management is discussed in Section 3.5.

The approvals are the sign-off on the plan by the relevant stakeholders.

3.2.3.4 Scheduling Test Planning
Planning is important and planning takes time.

If you fail to plan—you plan to fail!
It is important to plan activities rather than just jump headfirst into ac-

tion. The work on the planning provides a deeper understanding of the task
at hand, and it is much easier to change something you have written down or
sketched out on a piece of paper, than something that has already taken place
in the real world.

Because planning takes time and because it is important, it should be
planned so that it can start as early as possible. Take your planning seriously,
so that you don’t end up like this poster painter once did:

The benefits of starting test planning early are many:

 There is time to do a proper job of planning.
 There is more time to talk and/or negotiate with stakeholders.
 Potential problems might be spotted in time to warn all the relevant

 stakeholders.
 It is possible to influence the overall project plan.

Be prepared -Be prepared -

Book_samlet.indb 103 2/19/08 8:14:13 PM

104 Test Management

When you plan you have to keep in mind that a plan needs to be SMART:

Specific—Make it clear what the scope is
Measurable—Make it possible to determine if the plan still holds at any time
Accepted—Make every stakeholder agree to his or her involvement
Relevant—Make references to additional information; don’t copy it
Time-specific—Provide dates

The test plan should be reviewed and approved by all stakeholders to ensure
their commitment. A plan is invalid without commitment from the contributors.

Remember that a plan is just a plan; it is not unchangeable once written. A
plan must be a living document that should constantly be updated to reflect
the changes in the real world. Contrary to what many people think it is not a
virtue to keep to a plan at any cost—the virtue lies in getting the plan to align
with the real world. No matter how hard you try, you are not able to see what
is going to happen in the future.

You should always plan The New Yorker way: Adjust the detailing of the
planning with the visibility at any given moment. When close to an activity
provide many details; for activities further away provide fewer details.

As the time for the execution of activities approaches, more details can be
provided, and the necessary adjustments done.

All this takes time and it should not be “invisible” work (i.e., work that is
not scheduled reported anywhere). The same in fact holds true for the moni-
toring activities and for the test reporting.

3.2.3.5 Test Report
The purpose of test reporting is to summarize the results and provide evalua-
tions based on these results.

A test report should be issued at the completion of each test level and
the end of the entire testing assignment task. The test reports should include
analysis of result information to allow management decisions, based on risk,
on whether to proceed to the next level of test or to project implementation,
or whether more testing is required. Top management may also need infor-
mation for regularly scheduled project status meetings and at the end of the
project in order to adjust policy and strategy.

According to IEEE 829 the test report should contain:

Test report identifier

1. Summary
2. Variances
3. Comprehensiveness assessment
4. Summary of results R

Book_samlet.indb 104 2/19/08 8:14:14 PM

3.2 Test Management Documentation 105

5. Evaluation
6. Summary of activities

Approvals

The test report identifier is the identification information for the report itself.
As for all the other documentation, it could be formed by the name of the
report, the organizational affiliation, the version, and the status.

If the report is to be placed under configuration management, the identi-
fication should adhere to the organization's standards for configuration man-
agement, if there is one.

Test Report; Summary
The summary provides an overview of test activities. This section could refer
to the test plan. The summary should also include any conclusion. It should
be possible to read the summary in isolation and get the main information
about the test.

Test Report; Variances
The variances to be reported here are all incidents that have happened for any
of the items used as a basis for the test. It must also include a summary of
what was done and not done with regard to the original plan.

A variance could for example be the issue of a new version of the require-
ments specification after the approval of the test specification.

Test Report; Comprehensiveness Assessment
In this section we report whether we made it or not according to the origi-
nal (or modified) plan. It should describe which of the planned tests were not
performed, if any, and why not.

This is where we must describe how we met the original completion crite-
ria. If they where modified, this is where we explain why.

Any statistically valid conclusions that can be drawn from these analyses
could be used to predict the quality level achieved by the tested product. They
can also be used to compare with the target level established in the test plans.

Test Report; Summary of Results
We must provide an overview of incidents found and incidents solved during
the testing.

We can also list findings about which functions are working and which
functions are not; or about which risks have been eliminated and which are
still outstanding.

Book_samlet.indb 105 2/19/08 8:14:14 PM

106 Test Management

The evaluation sums up the expectations versus the actual findings. Any
out-of-scope situations should also be documented as should outstanding
issues.

We can draw conclusions regarding the quality of software by comparing
the planned quality levels with the actual. We can also give recommendations,
but it is not the responsibility of the testers to decide whether the test object
should be released or not. That is a management decision—project manage-
ment, product management, or even higher up.

Test Report; Evaluation
In this section we should give an overall evaluation of the test item, preferably
based on a risk analysis of possible outstanding risks related to the release of
the item.

The evaluation must be based on the result of the test compared to the
completion criteria.

Test Report; Summary of Activities
Here we must provide an overview of the resource usage for the testing. This
could be in terms of time used and other costs such as investments in tools.

The approvals here are the approvals of the test report, not of the test
object.

3.3 Test Estimation
3.3.1 General Estimation Principles
Estimation is a prediction of how much time it takes to perform an activity. It
is an approximate calculation or judgment, not something carved in stone. An
estimate is typically based on the professional understanding of experienced
practitioners.

There are many ways in which to express estimations, but the best way is
in hours. In that case we don’t get problems with holidays, effective working
hours, and so forth. You must never express estimates using dates; dates and
estimates are incompatible.

Estimation is input to the scheduling. Only in that activity will we trans-
form the estimated hours into dates.

We can also estimate other elements than just time, for example, number
of test cases, number of faults to be found, and number of iterations in the
test process needed to fulfill the completion criteria. We may also estimate any
other costs, such as hardware and tools.

We should always take our estimations seriously. Be honest when you
estimate, even though it is often easier to get forgiveness than permission.
Keep your original estimates for future reference.

Book_samlet.indb 106 2/19/08 8:14:14 PM

3.3 Test Estimation 107

In line with this remember that estimation is not:

 the most optimistic prediction you can think of
 equal to the last estimate that was made
 equal to the last estimate + the delay the customer or the boss is

 willing to accept
 equal to a given “correct” answer

Estimates are predictions about the future and predictions are by defini-
tion uncertain. The closer we come to the actual result, the less is the uncer-
tainty as illustrated here.

You should always calculate with an uncertainty in every estimate and
document this uncertainty with the estimate. Furthermore, estimates should
always be accompanied by the rationale or justification for the estimation
values along with any assumptions and prerequisites.

3.3.2 Test Estimation Principles
Estimating test activities is in many ways like all other estimation in a project.
We need to take all tasks, even the smallest and seemingly insignificant, into
account.

The time to complete must be estimated for each task defined in the task
section, including all the test process activities from test planning to checking for
completion.

Book_samlet.indb 107 2/19/08 8:14:15 PM

108 Test Management

Even though estimation of testing tasks is in many ways identical to the
estimation for any other process, there are also important differences. A test is
a success if it detects faults—this is the paradox with which we have to deal.

The test estimation is different from other project estimations, because
the number of failures is not known in advance—though it can be estimated
as well. The number of necessary iterations before the completion criteria are
met is usually not known either. As a rule of thumb, at least three iterations
must be reckoned with—one is definitely not enough, unless the completion
criterion is a simple execution of all test cases, and independent of the num-
ber of outstanding faults and coverage.

Nevertheless, we have to do our best. The estimation must include:

 Time to produce incident registrations
 Possible time to wait for fault analysis
 Possible time to wait for fault correction
 Time for retest and regression test (minimum three iterations!)

The reason why we have to cater for several iterations is that, well: “Errare
humanum est!”

When we report incidents and the underlying faults are corrected by
development or support staff, not all reported faults are actually corrected.
Furthermore, fault correction introduces new faults, and fault correction
unveils existing faults that we could not see before.

Experience in the testing business shows that 50% of the original number of
faults remains after correction. These are distributed like this:

Remaining faults after correction 20%
Unveiled faults after correction 10%
New faults after correction 20%

So if we report 100 faults, we have 20 + 20 + 10 = 50 faults to report in the
next iteration, 10 + 10 + 5 = 25 faults in the third, and 5 + 5 + 2 = 12 in
the forth.

These are general experience numbers. It is important that you collect
your own metrics!

3.3.3 The Estimation Process
Estimation is a process like anything else we do. You should of course use your
organization’s standard process for estimation, if there is one. Otherwise, you
can adapt an estimation procedure like the generic one described here.

Book_samlet.indb 108 2/19/08 8:14:15 PM

3.3 Test Estimation 109

1. Define the purpose of the estimation—Is this estimation the first
 approach, for a proposal, or for detailed planning?
2. Plan the estimating task—Estimation is not a two-minute task; set
 sufficient time aside for it.
3. Write down the basis for the estimation—Here the scope and the
 size of the work are determined, and all factors that may influence
 the estimates are registered. This includes factors related to the
 nature of the processes we are working by, the nature of the project
 we are working in, the people we are working with, and any risks
 we are facing.
4. Break down the work—This is the work breakdown (i.e., the listing
 of all the tasks to estimate). Do this as well as possible in relation to
 the purpose.
5. Estimate—Use more than one technique as appropriate.
6. Compare with reality and reestimate—This is the ongoing monitoring
 and control of how the work that we have estimated is actually going.

3.3.4 Estimation Techniques
The following estimation techniques are the most used and an expression of
the best practice within estimation.

 FIA (finger in the air) or best guess
 Experience-based estimation
 Analogies and experts
 Delphi technique
 Three-point estimation (successive calculation)
 Model-based estimation
 Function points
 Test points
 Percentage distribution

3.3.4.1 Estimation; Best Guess (FIA)
This technique is more or less pure guesswork, but it will always be based on
some sort of experience and a number of (unconscious) assumptions. The
technique is very widespread, but since it is based on your gut feeling it is
bound to be inaccurate. It is often not repeatable, and it is not always trusted.

The uncertainty contingency is probably around 200%–400% for estimates
based on best guess. We can do better than that.

Book_samlet.indb 109 2/19/08 8:14:16 PM

110 Test Management

3.3.4.2 Estimation; Analogies and Experts
In the analogy techniques you base your estimate on something you have
experienced before.

For example: “This looks very much like the system I tested in my previous job.
That took us three months, and we were four people. This is slightly smaller
and we are five people—so I guess this will take two months to complete.”

If you have participated in a testing project that is comparable to the one
you are estimating, you might use that as a baseline to do your estimation.

Analogies may also be based on metrics collected from previous tests. We
may estimate the number of iterations of the test based on recent records of
comparable test efforts. We can calculate the average effort required per test
on a previous test effort and multiply by the number of tests estimated for
this test effort.

Experts, in the estimation context, know what they are talking about and
have relevant knowledge. It is almost always possible to find experts some-
where in the organization.

If experts on this kind of testing are available, then by all means make
use of them. They have been there before, so they know what they are talking
about.

3.3.4.3 Estimation; Delphi Technique
This is a simple technique that has proved remarkably resilient even in highly
complex situations.

You must appoint an estimation group as appropriate. This can be stake-
holders and/or experts in the tasks to estimate.

The steps in this estimation process are:

 Each member of the group gives an estimate.
 The group is informed about the average and distribution of the esti-

 mates.
 Those giving estimates in the lower quartile and in the upper

 quartile are asked to tell the rest of the group why their estimates
 were as they were.

 The group estimates again—this time taking the previous result and
 the provided arguments for the “extreme” estimates into account.

 This may continue two, three, four, or more times until the variation
 in the estimates is sufficiently small.

Usually the average of the estimations does not change much, but the
variation is rapidly decreased. This gives confidence in the final estimation
result.

Book_samlet.indb 110 2/19/08 8:14:16 PM

3.3 Test Estimation 111

The Delphi techniques can be used in many ways. The people taking part
can be in the same room, but they may also be continents apart and the tech-
nique used via e-mail.

The technique can be combined with other techniques. Most often
the participants give their initial estimates based on experience and/or they
are experts in a specific area. The initial estimates may also be obtained
using some of the other estimation techniques to make them even more
trustworthy.

3.3.4.4 Estimation; Three-Point Estimation
Three-point estimation is a statistical calculation of the probability of finishing
within a given time. The technique is useful for quantifying uncertainty to the
estimate. The technique is also called successive calculation because tasks are
broken down and the estimates successively calculated until the variance is
within acceptable limits.

Three point estimation is based on three estimates:

 The most optimistic time (ideal conditions)
 The most likely time (if we do business as usual)
 The most pessimistic time (Murphy is with us all the way)

The three estimates to be used can be provided in a number of ways. One
person can be asked to provide all of them, or a group, for example some of
the test team members, can take part in the estimation. The estimates can be
provided using the Delphi technique or other recognized techniques. High
and low values may either be estimated separately (i.e., “what are the best
and the worst cases?”) or they may be the highest and the lowest of the indi-
vidual estimates.

If the “best and worst and most likely” values are used, the estimators
should be 99% sure that the actual value will fall between the low and the
high values.

From these three estimates it is possible to define the distribution function
for the time to finish. It could look like the figure shown where Vo = most
optimistic; Vs = most likely; Vp = most pessimistic; and Vm = mean.

Book_samlet.indb 111 2/19/08 8:14:16 PM

112 Test Management

We can use the approximated formula to derive:
Vm = (Vo + 3*Vs + Vp) / 5
S = (Vp – Vo) / 5 (the standard deviation)
Based on this distribution we can calculate the time needed for any prob-

ability of finishing the task we want, by using the appropriate formula.

For the 5% interval the formulas are:
5%: Vm – 2S 95%: Vm + 2S
Let us say that for a testing task we have reckoned:
Vo = 70 hours Vs = 80 hours Vp = 110 hours
We calculate:
Vm = (Vo + 3*Vs + Vp)/5 = (70 + 3*80 + 110)/5 = 84
S = (Vp – Vo)/5 = (110 – 70)/5 = 8
The upper value in the 95% interval = 84 + 2 * 8 = 100
Therefore if we want to be 95% sure that we’ll finish in time our estimate for
the given task should be 100 hours.

All tasks or a selection of the most critical tasks can be estimated using
this technique.

3.3.4.5 Estimation; Function Points
This technique is a factor estimation technique initially published by Albrecht
in 1979. It has been revised several times, and it now maintained by IFPUG
—International Function Points User Group. The group has been permanent
since 1992. Version 4.0 of the technique was published in 1994.

The estimation is based on a model of the product, for example, a require-
ments specification and/or a prototype.

Five aspects of the product are counted from the model:

 External inputs
 External outputs
 External enquiries
 Internal logical files
 External interface files

The counts are then multiplied with a weight and the total of the weight-
ed counts is the unadjusted sum. The actual effort in person hours is then
calculated with an adjustment factor obtained from previous project data.

It requires some training to be able to count function points correctly.
Continuous comparisons of actual time spent with the estimates are essential
to get the best possible local adjustment factor.

Book_samlet.indb 112 2/19/08 8:14:16 PM

3.3 Test Estimation 113

The disadvantage of using function points is that they require detailed
requirements in advance. Many modern systems are specified using use cases,
and use cases are incompatible with this technique.

3.3.4.6 Estimation; Test Points
In 1999 Martin Pol et al. published a dedicated test estimation technique
called test points as part of the TMAP method.

The technique is based on the function point technique, and it provides a
unit of measurement for the size of the high-level test (system and acceptance
tests) to be executed.

The technique converts function points into test points based on the im-
pact of specific factors that affect tests, such as:

 Quality requirements
 The system’s size and complexity
 The quality of the test basis (the document(s) the test is specified

 toward)
 The extent to which test tools are used

3.3.4.7 Estimation; Percentage Distribution
Unlike all the other techniques discussed here, this technique is a so-called
top-down estimation technique. The fundamental idea is that test efforts can
be derived from the development effort.

The estimation using this technique starts from an estimate of the total
effort for a project. This estimate may be the result of the usage of appropriate
estimation techniques at the project management level.

The next step is to use formulas (usually just percentages) to distribute
this total effort over defined tasks, including the testing tasks. The formulas
are based on empirical data, and they vary widely from organization to orga-
nization.

It is essential that you get your own empirical data and constantly trim it according
to experiences gained.

If you do not have any data you could assume that the total testing effort
is 25–30% of the total project effort. The testing effort should then be spread
out on the test levels with an appropriate amount for each level.

This example is from Capers Jones Applied software measurements. It is for in-
house development of administrative systems. The left-hand table shows the
distribution of the total effort on overall tasks, including all tests as one task
only. The right-hand table shows the distribution of the effort on detailed test-
ing tasks (the terminology is that of Capers Jones.)

Book_samlet.indb 113 2/19/08 8:14:17 PM

114 Test Management

3.3.5 From Estimations to Plan and Back Again
The estimation is done to provide input to the scheduling activity in the
project planning.

In the scheduling we bring the estimates for the defined testing tasks
together with the people, who are going to be performing the tasks. Based on
the start date for the first task and the dependencies between the tasks we can
then puzzle the tasks together and calculate the expected finishing date.

Estimations should be in hours. The scheduling provides the dates: dates
for when the performance of each of the tasks should begin, and dates for
when they are expected to be finished.

When defining the expected finish date for a task we need to take several
aspects into account:

 The start and/or finish dates of others tasks that this task depends
 on to start, if any
 The earliest possible start date for the task
 The general calendar regarding public holidays
 The pure estimate for the time to finish the task
 The efficiency of the employee(s) to perform the task—typically 70–

 80% for a full time assignment
 The employee(s)’s availability—this should NOT be less than 25%

We should not expect that our estimations are accepted straightaway.
Making plans for a development project is a very delicate balance between

Activity %

Requirements 9.5

Design 15.5

Coding 20

Test (all test phases) 27

Project management 13

Quality assurance 0

Configuration management 3

Documentation 9

Installation and training 3

All phases %

Component testing 16

Independent testing 84

100

Independent testing %

Integration testing 24

System testing 52

Acceptance testing 24

100

System testing %

Functional system testing 65

Nonfunctional system testing 35

100

Book_samlet.indb 114 2/19/08 8:14:17 PM

3.4 Test Progress Monitoring and Control 115

resources (including cost), time, and quality of the work to be done. Testing
is often on the critical path for a project, and testing estimates are likely to be
the subject of negotiations between stakeholders—typically the customer or
higher management, the project manager, and the test manager.

The estimating does not stop with the preparation of the first schedule. Once the
actual testing has started—from the first planning activities and onwards,
we need to frequently monitor how realities correspond to the estimates.
Based on the new information gathered through the monitoring, we must re-
estimate, when the deviations between estimates and reality get too large to
stay in control. Only when all the testing activities are completed can we stop
the monitoring and re-estimation.

3.3.6 Get Your Own Measurements
All estimates are based on experience—maybe very informally (FIA), maybe
very formally (like function points). The better the basis for the estimation is,
the better the estimation gets. Better estimation means more reliable estima-
tions, and that is what we both, management and customers, want.

In order to get better estimates we need to collect actual data. The more
empirical data we have, the better will the estimates be. In general we can say
that (almost) any data is better than no data.

We do, however, always need to objectively evaluate the empirical data we
have—is it collected from tasks that can be compared with the ones we are
dealing with now? When we use the empirical data available, we also have an
obligation to contribute to and refine the empirical data on an ongoing basis.

Empirical data for estimation is part of the measurements we are collect-
ing. So we need to chip in to establish a set of simple measurements of time,
costs, and size in all projects we participate in. This requires procedure(s) for
collection of data to be established and maintained, and training of the (test)
managers in these procedure(s).

From an organizational point of view it must be checked that all com-
pleted projects collect data, and the usage of these data must, of course, also
be enforced.

3.4 Test Progress Monitoring and Control
Continuous monitoring of how the test is progressing compared to the plan is
absolutely necessary to stay in control. If we don’t control the test project, it
will control us—and that is not a nice experience.

You need to collect information about facts, compare these with the estimates, and
analyze the findings. This is needed to minimize divergence from the test plan.
If there is any discrepancy you need to take action to keep in control, and you
need to inform the stakeholders.

Book_samlet.indb 115 2/19/08 8:14:17 PM

116 Test Management

There are a few rules that you must adhere to when you do the follow-up
on the actual activities. Follow-up must be guided by:

 Honesty
 Visibility
 Action

First of all you need to be honest, not only when you estimate, but also
when you collect information about reality. In the long run you loose integrity
and trust if you “tailor” the numbers, or come up with “political” results of
the monitoring.

You also need to make the information visible to all stakeholders. Again
you lose trust if you hide the truth, be it a positive truth (we are ahead of
schedule) or a negative truth (we are behind schedule). Information about
progress and findings must be made readily available to the stakeholders in
appropriate forms.

The last thing you need to do to stay in control is to take action whenever
needed. It is your duty as test manager to intervene as soon as deviations appear!

3.4.1 Collecting Data
The data to collect during testing should be specified in the approach section
in the test plan, based on the requirements outlined in the policy and the
strategy.

The concept of metrics and measurements is discussed in Section 1.3.
No matter which data we have planned to collect it is not enough to just

collect it. It must be presented and analyzed to be of real value.

3.4.2 Presenting the Measurements
Test reports are used to communicate test progress. These reports must be
tailored to the different recipients or stakeholders. The immediate stakeholders
for test monitoring information are the customer, the project and/or product
management (or higher), the test management, and the testers.

The customer and the management above test management need test
reports (described below) when the test is completed. The test management
needs information on a continuous basis to keep in control. The testers need
to be kept informed on progress at a very regular basis—at least daily when
the activities are at their peak.

A picture speaks a thousand words. The best way to present progress in-
formation for testing is by using graphics. This holds true for all stakeholders,
though especially for the testers in the middle of the action. Graphics used in
the right way give an immediate overview—or feeling—for the state of the
testing.

Book_samlet.indb 116 2/19/08 8:14:18 PM

3.4 Test Progress Monitoring and Control 117

The flip side of the coin is that graphics can “lie.” You can do it deliberately
—which is outside the scope of this book—or you can make it happen acciden-
tally if you are too eager to make your presentation “interesting” and “lively.”
The truth is usually boring, but adding decoration does not help.

One of the common mistakes is to use too many dimensions. Most of
our information is one-dimensional: the number of something. Many graphs,
however, present one-dimensional information in a two- or even three-
dimensional way.

Consider the following information:
Day 1: 2 faults found
Day 2: 5 faults found
Day 3 11 faults found

The simplest way to present this is as shown to the right. See the trend?
Yes, that is perfectly clear! Need anything else? Not really.

But all too often we may see exactly the same information presented like
this: or, even worse, like this:

Does that add to the understanding? No.
There is a “metric” called the ink-factor. That is defined as the amount of

ink used to convey the message compared to the amount of ink used in the
graph. You should keep the ink-factor as low as possible.

Also avoid highlighting (read: hiding) the message in decoration, patterns, shading,
or color. A graph that presents the number of failures found each day as the
size of the corollas of a line of flowers is perhaps cute, but not professional.

More obvious ways to misinform is by changing the scale across the axis,
or by omitting or distorting the context of the information or the way it has
been collected.

0

2

4

6

8

10

12

0 1 2 3 4

0

2

4

6

8

10

12

1 2 3

0

2

4

6

8

10

12

1 2 3

Sources:
Tufle and Huff

Book_samlet.indb 117 2/19/08 8:14:18 PM

118 Test Management

Whichever way you choose to present the information you have collected,
it is your responsibility to ensure that the recipients understand and interpret
the data correctly. In the following some of the most common and useful ways
of presenting test progress information are described.

3.4.2.1 S-Curves
The most used, most loved, and most useful way of presenting progress
information and controlling what’s happening is S-curves. They are named so
because of the shape of the wanted curve.

S-curves can be used for many different metrics. You need two that are
related to each other—one is typically time. The other could, for example, be:

 Test cases (run, attempted, passed, completed)
 Incidents (encountered, fixed, retested)

S-curves can give us early warnings of something being wrong. It can also
give us reassurance that (so far) things are progressing as planned.

The principle in S-curves is that our work falls in three phases:

 Phase 1: Slow start—not more than 15–25%
 An initial period of reduced efficiency to allow for testing teams to
 become familiar with the testing task, for example with the test
 object, the test environment, and execution and logging practices.
 Phase 2: Productive phase—55–65%
 After the initial period, the second phase is the period of maximum
 efficiency.
 Phase 3: The difficult part—10–25%
 The final phase reflects the need to be able to ease off the work as
 the testing window nears completion.

change from
phase 2 to 3

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

change from
phase 1 to 2

Source:
Marnie
Hutcheson,
Unicom
Seminar,
Oct 95.

Book_samlet.indb 118 2/19/08 8:14:19 PM

3.4 Test Progress Monitoring and Control 119

The following figure shows how real data are reported as several S-curves
in the same graph.

To use an S-curve you need to know what the expected start point (usually
0,0) and the expected end point are. The end point is your estimation of what
needs to be achieved by the end time; for example 300 test cases passed after
21 days of testing.

You mark the start point and the end point, and you draw (or get a tool
to draw) a third-order polynomial that fits. A straight-line approximation
between the two points may do.

As the time goes and you do you work, you plot in your achievements—
for example, the sum of test cases passed day by day. Follow the progress to
see if it fits the predicted curve. If it does, we are happy!

If the upward turn, marking the start of the second phase, comes too late,
we are in trouble. But the good news is that we know it and can take action
well before the end date! If the curve is rising too fast, we may also be in
trouble, and we must investigate what could be wrong. Maybe our test cases
are not giving enough failures? Maybe we have run the smallest first and are
pushing work in front of us?

1 3 5 7 9 11 13 15 17 19 21 23 25

Not executed yet Not accepted Accepted with comments Accepted

Book_samlet.indb 119 2/19/08 8:14:19 PM

120 Test Management

3.4.2.2 Pie Chart
Pie charts are used to give an over-
view of the proportions of different
aspects relative to each other. Pie
charts are perhaps the most used
graph in the world.

The graph shown here gives a
nice impression of the testing going
well.

But think about the inkfactor
—maybe the third dimension is not
needed to present the information. Maybe it is even disturbing the impres-
sion: Should the lightest gray volume be almost nine times as big as the
medium gray?

3.4.2.3 Check Sheets
Check sheets are a good way to give a quick overview of status. They can be
used to show progress compared to plan, for example, for planned test cases,
planned test areas, or defined risks.

Check sheets can be presented as colorful graphics or expressed as lists or
hierarchies. They are usually easy to produce, and easy to understand. Some
organizations make wall-sized check sheets and stick them in the meeting
room or the corridor. This way everyone has easy access to the information
about the progress of the test.

A few examples of check sheets are shown next.
The first is an extract of the check sheet presented on Systematic’s in-

tranet. It is updated every day. Even though the text has been deliberately
blurred and the extract is small, it gives an impression of things going well.—
no black or light gray fields in the list!

Current Test Status

Accepted with
comments

87%

Not accepted
3%

Accepted with
comments

10%

Not executed
yet
0%

Area Remain % Complete Status Comment
agfdg 8 56
gstyk 0 100
jl,flli 0 100
dsrahjtdulk 1 80
ths 2 56
jdvw 0 100
yjdtek 0 100

0 87

Legend Completed
In progress
Blocked (see comment)
Not started

Status for project: ksdf

Book_samlet.indb 120 2/19/08 8:14:20 PM

3.4 Test Progress Monitoring and Control 121

Area Test effort Coverage
planned

Coverage
achieved

Quality Comments

Start up High >80% 27% ER 52

Discount Low >40%
<70%

53%

Pricing Blocked >40%
<70%

14% ER 86

C1 C3 C2

C4 C5 C7

C8 C9

C6

C-main

The next is a dashboard suggested by James Bach:

James Bach’s recommendations for the presentation are: draw it on the
wall, make it huge, and update it every day.

The last example here is a tiny extract of a hierarchical check sheet showing
the progress of a component test for a system.

The marked components have
been successfully component-tested
and are ready for integration.

The integration testing has not
yet started—no interfaces are marked
as having been successfully tested. It
is, however, easy to see which inter-
faces we have to test.

3.4.2.4 Risk-Based Reporting
If our test approach is based on identified and analyzed risks it is appropriate
to report on the test progress in terms of these risks.

The purpose of this test is to eliminate the risk, so the reporting must be
in terms of eliminated risks. The open risks at the test start could be illus-
trated like this:

Planned test end

Open risks

Time
0 = test start

Open risks

Time
0 = test start

Book_samlet.indb 121 2/19/08 8:14:22 PM

122 Test Management

At any point in time we must make it possible to see from the updated
progress graph which risks are still open, if any. The risks with the small verti-
cal line across them are eliminated and hence no longer present any threat to
the system!

3.4.2.5 Statistical Reporting
The way a process is performed is different from project to project and over
time, because processes are performed by people, not machines.

Statistics is the science of patterns in a variable world. We can say that
statistics make the invisible visible. This means that statistical methods can
be used to help us:

 Understand the past
 Control the present
 Predict the future

Statistics also include handling of “fortuitousness,” that is, happenings
that are out of the ordinary.

When we have to deal with many happenings assumed to be “alike,” we
need to find out what “alike” means. To do that we must find out what the
norm is, and what variances are allowed to still call things “normal.”

Norm and variation vary. In our family the norm is that we are friendly and
talk to each other in nice, calm tones of voices. I, however, have a short tem-
per, and sometimes raise my voice without anything being really out of the
normal. If, on the other hand, I keep quiet, then my mood is not within the
norm. My husband is different: If he raises his voice just a little bit, he is sure
to be in a very bad mood.

The norm in statistics can be calculated in three much used ways, namely:
mean—the arithmetic average; median—the value that splits the group in the

Open risks

Time
0 Planned test endToday

Book_samlet.indb 122 2/19/08 8:14:23 PM

3.4 Test Progress Monitoring and Control 123

X & R Chart
Overall Course Evaluations

middle; and modus—the most frequent value.
But how far from the “normal” value, can a given value be and still be

considered within the norm? This can be seen in a control sheet.

An example of a control sheet is shown here. The values are ratings for a
course. Every week 10 evaluations are randomly sampled and the average
is plotted in the graphs. The graph shows the upper and lower control levels
(UCL and LCL) for the series of ratings.

The values here are indicators for the course performance. We can choose
other values to be indicator values for our processes, if we want to control how
they are performed.

An indication value may, for example, be the average time per test case it takes
to produce a test specification.

When we examine the control sheet we must be looking for warnings
of something being out of the borders of the norm. Such warnings may, for
example, be:

 One value outside either CL
 Two out of three values on the same side
 Six values in a row either up or down
 Fourteen values in a row alternately up and down

Book_samlet.indb 123 2/19/08 8:14:23 PM

124 Test Management

Many tools can assist in the necessary statistical calculations. The use of
control sheets and statistics is rather advanced process control—belonging to
maturity level 4—and we will not go into further depth here.

3.4.3 Stay in Control
Sometimes we need to take action to stay in control.

Keeping the triangle of test quality in mind, you have three aspects you
can change—and you must change at least two at the time.

The aspects are:

 The resources for the task
 The time for the task
 The quality of the work to be performed

Usually when things are getting out of control it is because we are behind
schedule or because our time frame has been squeezed. To compensate for this
we must (try to) obtain additional resources and/or change the quality of the
testing. The latter can be done by changing the test completion criteria and/or
changing the amount or depths of the tests to be performed.

Any change you make must be reflected in the plan. The plan must be
updated with the new decisions based on the new information. The new plan
must be reviewed and approved, just like the first one.

Remember that it is not a virtue to comply with the plan at any cost—the virtue
lies in the plan complying with reality.

No matter which way the progress is measured and presented, the test
manager must analyze the measurements. If something seems to be going
the adverse way, further analysis must be made to determine what may be
wrong.

Examples of things not being as they should be are:

 The delivered software is not ready for test
 The easy test cases have been run first
 The test cases are not sufficiently specified
 The test case does not give the right coverage
 General faults have wide effects
 Fault correction is too slow
 Fault correction is not sufficiently effective

Based on this analysis the test manager must identify what can be done
to remedy or mitigate the problems.

Book_samlet.indb 124 2/19/08 8:14:24 PM

3.5 Testing and Risk 125

Possible actions may, for example, be:

 Tighten entry criteria
 Cancel the project
 Improve the test specifications
 Improve the incident reporting
 Perform a new risk analysis and replan
 Do more regression testing

The important message to the test manager is that he or she must inter-
vene as soon as deviations appear! Or in other words:

If you do not control the test, it will control you!
To sum up we can say that as test managers we must set out the destina-

tion and plan how to get there; collect data as we go along; analyze data to
obtain information; and act on the information and change destination and
plan as appropriate.

3.5 Testing and Risk
The golden rule of testing is:

Everybody with some understanding of requirements and tests will know
that a requirement like this cannot be verified. What does it mean: the best
possible test? It is not immediately measurable.

What is the best possible test then? The answer to that is: It depends!
The best possible test depends on the risk associated with having defects left in the

product when it is released to the customer!
The best possible test is determined by the risks we are facing and the

risks we are willing to run. Obtaining consensus from stakeholders on the
most important risks to cover is essential.

3.5.1 Introduction to Risk-Based Testing
We have to live with the fact that it is impossible to test everything. Testing is
sample control. There is a risk involved in all sample control: the risk of over-
looking defects in the areas we are not testing.

Always test so that whenever you have to stop
you have done the best possible test.

Book_samlet.indb 125 2/19/08 8:14:24 PM

126 Test Management

3.5.1.1 Risk Definition
A risk is defined as: “The possibility of realizing an unwanted negative con-
sequence of an incident.”

Alternatively, a risk may be defined as: “A problem that has not materialized yet
and possibly never will.”

There are two important points in these definitions:

 A risk entails something negative
 A risk may or may not happen—we don’t know

A risk therefore has two aspects:

 Effect (impact—consequence)
 Probability (likelihood—frequency)

It is not a risk (to us), if there is no effect of an event that might happen.
We can therefore ignore it even if the probability is high.

There is a probability that there are defects in the new version of our database
management system, but that will have no effect on the quality of our product
if it happens, because it is not used in our system.

It is not a risk if there is no (or an extremely small) probability that an
event will happen, even if the effect would be extremely big, if it did. We can
therefore ignore that as well.

There is no (detectable) risk of our department closing down, because we
have lots of orders, and are making good money, and both management and
employees like their jobs. If we did close down the effect on the project would
be pretty bad, if not disastrous.

It is not a risk either if the probability of an event with a negative effect is
100%. In this case we have a real problem on our hands, and we will have to
deal with that in our planning.

It is a problem—not a risk—that we will have to do without one of our test
experts because she has found another job and is leaving in three months.

The two aspects of risk can be combined in
Risk level = probability x effect
From this it is quite clear that if we have no probability or no effect we

have no risk.
The risks that do have a risk exposure greater than zero are the risks we

have to deal with.

Book_samlet.indb 126 2/19/08 8:14:24 PM

3.5 Testing and Risk 127

3.5.1.2 Risk Types
It is quite common to treat all the risks we can think of in connection with a
development project in one big bundle. This can be quite overwhelming.

It is therefore a very good idea to take a closer look at the risks and divide
them into classes, corresponding to where they may hit, or what they are
threatening.

Risks hit in different places, namely;

 The business
 The processes
 The project
 The product

The risks threatening the product are the testers’ main concern. This is
where we can make a difference.

The business risks are things threatening the entire company or organiza-
tion from a “staying-in-business” point of view. This is out of the scope of this
book, and will not be discussed further.

Process risks are related to the processes and/or the way work is per-
formed. It is also out of the scope of this book, but will be briefly discussed
because knowledge about processes is indispensable in a modern develop-
ment organization.

Process risk threatens the effectiveness and efficiency with which we
work on an assignment. Process risks may be originated in:

 Missing process(es)
 The organization’s lack of knowledge about the processes
 Inadequate processes
 Inconsistencies between processes
 Unsuitable processes
 Lack of support in the form of templates and techniques

Process risks jeopardize the way the work in the project is being performed.
These risks should be the concern of the project manager and those responsible
for the processes in the organization.

Process risks may influence business, as well as project and product
risks.

Book_samlet.indb 127 2/19/08 8:14:25 PM

128 Test Management

Project Risks
Project risks are related to the project and the successful completion of the
project.

A project consists of a number of activities and phases from requirements
development to the final acceptance test. These activities are supported
by activities like quality assurance, configuration management, and project
management.

All the activities in a project are estimated, get allocated resources, and are
scheduled. As the project progresses the activities are monitored according to
the plan.

Risks concerning the project may be originated in:

 People assigned to the project (e.g., their availability, adequate skills
 and knowledge, and personalities)
 Time
 Money
 Development and test environment, including tools
 External interfaces
 Customer/supplier relationships

Project risks jeopardize the project’s progress and successful completion
according to the plan.

Examples of project risks are:

 The necessary analysts are not available when the requirements
 development is expected to start
 Two of the senior designers are not on speaking terms and useful
 information exchange between them is not done—this causes the
 design phase to take longer than expected
 The complexity of the user interface has been underestimated
 The testers are not adequately trained in testing techniques, so
 testing requires more resources than expected
 The integration is more time-consuming than expected
 The access to external data is not possible with the technique
 chosen in the design

The project risks are the main concern of the project manager and higher
management.

The test manager is concerned with the project risks related to the test
project as it is specified in the test plan documents.

Book_samlet.indb 128 2/19/08 8:14:25 PM

3.5 Testing and Risk 129

Product Risks
Product risks are related to the final product. They are the risks of defects
remaining in the product when it is delivered.

We want to deliver the required quality and reliability. This cannot be test-
ed into the product at the end of the development, but must be worked into
the product through the work products produced during development and in
the implementation of the components.

Product risks may be originated in:

 Functional and nonfunctional requirements
 Missing requirements
 Ambiguous requirements
 Misunderstood requirements
 Requirements on which stakeholders do not agree

 More than 50% of all defects in products can be traced back to defects in
the requirements.

 Design
 Not traceable to requirement
 Incorrect
 Incomplete (too superficial)
 Coding
 Testing
 Not traceable
 Inadequate

Product risks jeopardize customer satisfaction and maybe even the cus-
tomer’s life and livelihood.

Product risks may be related to different requirement types, such as func-
tionality, safety, and security and political and technical factors.

Examples of product risks are:

 A small, but important functionality has been overlooked in the
 requirements and is therefore not implemented
 A calculation of discounts is wrongly implemented, and the
 customer may lose a lot of money
 The instrument may reset to default values if it is dropped on the floor
 It is possible to print a report of confidential customer information
 through a loophole in the reporting facility
 The installation procedure is difficult to follow

Book_samlet.indb 129 2/19/08 8:14:25 PM

130 Test Management

These risks are the main concern of the testers, since testing may mitigate
the risks. The test strategy for a product should be based on the product risks
that have been identified and analyzed.

Project risks and product risks can influence and be the cause of each
other. A project risk may cause a product risk, and a product risk may cause
a project risk.

If a project risk results in time being cut from component testing, this may
cause the product risk of defects remaining in the components that are not
tested or not tested sufficiently. This may further cause the project risk that
there is not sufficient time to perform a proper system test because too many
trivial failures are encountered in the system test.

3.5.1.3 Testing and Risk Management
Testing and management of risks should be tightly interwoven as they sup-
port each other. Testing can be based on the results of risk analysis, and test
results can give valuable feedback to support continuous risk analysis.

The result of a product risk analysis can be used in test planning to make
the test as effective as possible. It can be used to target the testing effort, since
the different types of testing are most effective for different risks.

Component testing is most effective for testing where the product risk expo-
sure related to complex calculations is highest.

The risk analysis results can also be used to prioritize and distribute the
test effort. The areas with the risk exposure should be planned to be tested
first and given the most time and other resources.

Finally the product risk analysis can be used to qualify the testing already
done. If test effort is related to risks it should be possible to report on dis-
solved and remaining risks at any time.

Testing can, as mentioned earlier, dissolve or mitigate the product risks.
The probability of sending a product with defects out to the customers is
reduced by the testing finding failures and the subsequent correction of the
defects.

Testing can also mitigate project risks if an appropriate test strategy is
applied, especially if testing is started early.

Even process risks may be reduced by analyzing failure reports and taking
appropriate process improvement initiatives.

Book_samlet.indb 130 2/19/08 8:14:25 PM

3.5 Testing and Risk 131

3.5.2 Risk Management
Risk management consists of the following activities:

 Risk identification
 Risk analysis
 Risk mitigation
 Risk follow-up

In risk identification we are finding out what may happen to threaten the
process, the project, or, in this particular context, the customer satisfaction for
the product.

The identified risks are evaluated in the risk analysis and ordered relatively
to each other. The analysis means that we assign probability and effect to the
risks. Based on this we can determine the risk exposure and hence which risk
is the worst and how the others relate to that.

One of the points in risk management is to use the results of the analysis
to mitigate the risks. Actions can be planned to lower the probability and/or
the effect of the risks. In this context of product risks and testing, test activi-
ties can be planned to mitigate the risks by lowering the probability of having
remaining defects in the product when it is released. The more defects we can
remove from the product as a result of the testing, the more the probability
falls.

Contingency planning is a part of classic risk management, but this is
not relevant for product risks in relation to testing. Testing is concerned with
lowering the probability of remaining defects for the defects that remain;
support and maintenance must be prepared to provide work-arounds and/or
corrections and updates.

Risk identification, analysis, and mitigation must not be a one-time activity.
It is necessary to follow-up on the risks as testing progresses. The results of
the testing activities provide input to continuous risk management.

Information about the failure frequency over time can be used to assess if the
probability of a risk is falling or rising.

There are many stakeholders in a development project, and they come
from different places and have different view points, also on risks.

The following table shows examples of stakeholders or stakeholder repre-
sentatives for a number of aspects of a development project.

Book_samlet.indb 131 2/19/08 8:14:26 PM

132 Test Management

All stakeholders identified for a project should be involved in the risk
management activities.

3.5.2.1 Risk Identification
Risk identification is finding out where things can go wrong and what can go
wrong, and writing it down to form the basis for risk analysis.

Risks are found in areas where the fulfillment of expectations may be
threatened (i.e., where customer satisfaction is jeopardized). Satisfying expecta-
tions is the way to success!

All stakeholders have expectations towards the product, but we are most
concerned with the expectations of the customer. The customer is the one to
order the product, to pay for it, and to take advantage of it, the latter possibly
through end users.

In the ideal world the customer’s expectations are expressed in user or
product requirements. These requirements are transformed into design, and
the requirements are fulfilled in the code and maybe also in other subsystems,
being integrated into the final products.

In less ideal worlds expectations may be derived from other sources.
Risks are not always evident. Even when we work with experienced and

knowledgeable stakeholders it can be efficient to use a risk identification
technique.

Aspect Stakeholder representatives

The business Product line manager
Business analysts
Marketing personnel
Finance executives

Future users Future users
Users of existing system
Users representing different types of user groups

User
representations

Marketing personnel
Salespeople
Employees from relevant support function

Technical,
development

Analysts, designers, programmers, testers
People responsible for manufacturing
People responsible for operation
People responsible for configuration management
People responsible for quality assurance

Technical, product Experts in and people responsible for usability, security
reliability, performance, portability

Book_samlet.indb 132 2/19/08 8:14:27 PM

3.5 Testing and Risk 133

Useful techniques are:

 Lessons learned
 Checklists
 Risk workshops
 Brainstorms
 Expert interviews
 Independent risk assessments

Techniques may be mixed to be even more efficient.

3.5.2.2 Lessons Learned and Checklists
Lessons learned and checklists are closely related. A checklist is a list of ge-
neric risks formed and maintained by experience (i.e., lessons learned from
previous projects).

Risk checklists are valuable assets in an organization and should always be
treated as such.

One or more product risk checklists should be kept in the organization,
depending on the diversity of the nature of the projects performed in the
organization.

A product risk checklist could be structured as the requirements specifica-
tion or the design specification is structured, or both.

The checklists used by the pilots before takeoff are long and must be run
through very carefully before every takeoff. A pilot was once hurried on by a
busy business man and asked to drop the checklists and get going. He carried
on with his work as he answered: “These checklists are written in blood!”

3.5.2.3 Risk Workshops
Workshops are an effective way to identify risks. There are no strict rules as to
how a workshop should be conducted, but a few guidelines can be given.

As many stakeholders as possible should be involved, though the number
of participants should not exceed 10–12 in order to give everybody a chance to
talk within reasonable intervals.

Risk workshops can get emotional, and a neutral facilitator—somebody
who is not by any account a stakeholder—should be present to guide the dis-
cussions. Encourage discussions and new ideas, but avoid conflicts.

Make sure that all participants agree that the objective has been reached
and that it is clear how work can proceed after the workshop.

Book_samlet.indb 133 2/19/08 8:14:27 PM

134 Test Management

3.5.2.4 Brainstorming
A brainstorm (in this context of risk identification) is an informal session
with the purpose of identifying possible risks connected with the product
when it is released.

The only rule that should apply during a brainstorm is that no possible risk
must be commented on in any way by the participants. Ideas should be allowed
to flow freely, the rationale being that even the most seemingly stupid, silly, or
strange thought may be the inspiration for valuable potential risks.

A brainstorm must have a facilitator who may act as a catalyst if ideas do
not flow freely. At the end of the session the facilitator must make sure that
whatever is being brought forward as possible risks is expressed as risk and
documented.

The stakeholders to be involved in this technique may be any type of
stakeholders.

3.5.2.5 Expert Interviews
Interviews may be conducted as individual interviews or as group interviews.
An interview is not as easy to conduct as many people think. It requires specific
skills and thorough preparation to get as much information as possible from
an interview.

First of all, an interview is not like an ordinary conversation. People in an
interview have different roles (i.e., the interviewer and the interviewee(s)),
and they may have a number of expectations and prejudices related to these
roles. Interviews must be prepared. The interviewer must, for example, make
sure that the right people are being interviewed and the right information is
gathered. A list of questions or a framework for the course of the interview
must be prepared.

Ample notes must be taken and/or the interview can be recorded with the
permission of the interviewee(s). The interviewer must extract a list of possible risks
from the interview and get agreement from all the participants.

3.5.2.6 Independent Risk Assessments
In cases where conflicts are threatening external consultants may be called in
to identify risks. External consultants could also be used if time is short or if
specific expertise not present with the immediate stakeholders is required.

The external consultants identify risks and usually perform or facilitate
the risk analysis.

The consultants may be external to the project organization or third-party
consultants entirely external to the developing organization.

Book_samlet.indb 134 2/19/08 8:14:27 PM

3.5 Testing and Risk 135

3.5.3 Risk Analysis
Risk analysis is the study of the identified risks. One thing is to identify and
list the risks; another is to put them into perspective relative to each other.
This is what the analysis of the risks helps us do.

The analysis must be performed by all the appropriate stakeholders, because
they all have different perspectives and the risk analysis aims at providing a
common and agreed perspective. Experts may be called in to contribute if
adequate expertise cannot be found among the immediate stakeholders.

Risk analysis can be performed more or less rigorously, but it should
always be taken seriously.

3.5.3.1 Risk Template
A risk template or a risk register is a very useful tool in risk management. It
can be used to support risk analysis and risk mitigation.

Risk templates can be held in office tools, for example, spreadsheets that
support calculations.

A risk template should include:

 Risk identification (e.g., number or title)
 Risk description
 Probability
 Effect
 Exposure
 Test priority
 Mitigation action = test type
 Dependencies and assumptions

3.5.3.2 Perception of Risks
The performance of risk analysis can be more or less objective. In fact most
risk analysis is based on perceptions; it is usually not possible to determine risk
probability and effect totally objectively. There is an element of prediction in
risk analysis since we have to do with something that has not happened and
maybe never will. There are usually very few trusted measurements applicable
to identified risks.

Perceptions are personal and different people have different “pain thresh-
olds.” Just look around you: Some people use their holidays to explore new
places; others always spend their holidays at the same place. In connection
with process improvements we sometimes say that if it blows hard some people
build shelters; others build windmills.

“If you do that, I'll never see you again!!!”
“Is that a promise or a threat?”

Book_samlet.indb 135 2/19/08 8:14:27 PM

136 Test Management

People in different professions may also have different view points on
risks, partly because people choose jobs according to their personalities, partly
because job-related experiences influence their perception of different risks.

The following descriptions of job-related risk perceptions are of course
gross generalizations, but they can be used as guidelines in understanding
different viewpoints on “the same risks.” The descriptions encompass:

 Project managers
 Developers
 Testers
 End users

Project managers are often under time pressure; they are used to compro-
mises. They know that even though things may look dark, the world usually
keeps standing.

Developers, that is analysts, designers, and programmers, are proud of
their work, and they know how it was done. They have really done their best,
and they are usually reluctant to accept that there may still be defects left in
there.

Testers often have a pessimistic view on work products, product compo-
nents, and products. We remember previous experiences where we received
objects for testing and got far more failures than we expected.

The end users are, despite what we might think, usually highly failure-tolerant.
They also tend to remember previous experiences, but what they remember
is that even though the system failed, they found a way around it or another
way of doing their work. End users use our product as a tool in their job, and
nothing more. If it does not help them, they’ll find another way of using the
tool, find another tool, or just live with it.

In risk analysis we must encourage communication and understanding
between stakeholders. Stakeholders need to be able to, if not agree with then at least
be aware of and accept others’ points of view. If need be, stakeholders will have to
compromise or use composite analysis. This is explained next.

3.5.3.3 Scales for Risk Analysis
The analysis of risks uses metrics for probability and effect. For all work with
metrics it is mandatory to use agreed and understood scales. This is therefore
also the case in risk analysis.

We can work with two different kinds of scale, namely:

 Qualitative
 Quantitative

Book_samlet.indb 136 2/19/08 8:14:28 PM

3.5 Testing and Risk 137

In a qualitative scale we work with feelings or assessments.

For effect we could use
bad—worse—worst

For probability this could be expressed as
not likely—likely—very likely

In a quantitative scale, on the other hand, we work with exact measures
or numbers.

For effect we could use actual cost in $ or Kr. or €.
For probability this could be expressed as
<= 10%, >10% & <= 50%, >50% & <=80%, > 80%

Whichever way to do it, we must define and agree on scales for both prob-
ability and effect before we start the risk analysis, that is before we assign
metrics to the probability of the identified risks actually materializing, and
metrics for the effects if they do.

3.5.3.4 Effect
The effect is the impact or consequences of a risk if (when?) it occurs. The
first thing we have to do is agree on a scale for the effect.

The obvious quantitative scale for the effect is the actual cost imparted by
a failure occurring out in the field. The actual cost can be measured in any
agreed currency ($, €, Kr.). This is an open scale; in theory there is no limit to
actual cost.

It can be very difficult to assess what the actual cost in real money might
be. On the other hand it can be quite an eye-opener to sit down and consider
all the sources of extra cost associated with a failure.

Expenses may for example be considered for:

 Time for the end user to realize that something is wrong
 Time to report the incident to first-line support
 Time for first-line support to understand the report and try to help
 Time for any double or extra work to be performed by the end users
 Loss of production because the system is down or malfunctioning
 Time for escalation to secondhand support
 Time for secondhand support to try to help
 Time to investigate the failure and decide what to do about it
 Time for finding the defect(s)
 Time for corrections to be implemented and tested in all affected
 objects

Book_samlet.indb 137 2/19/08 8:14:28 PM

138 Test Management

 Time for retesting and regression testing
 Time to reinstall the new version
 Time to update what has been done by other means while the system
 was unavailable or malfunctioning

These are all examples of time spent in connection with a failure. There
may also be costs associated with, for example, renting or replacing parts of
the system or the entire system.

Furthermore there may be an effect in the form of indirect losses from, for
example, people getting hurt, the environment being destroyed, or the com-
pany getting an adverse reputation or losing trustworthiness.

Failures have been known to cost lives or to put companies out of the
market completely. Fortunately, it is usually not that bad, but still the effects
of failures can be significant.

Another way to measure effect is by using a qualitative scale. Such a scale
could, for example, be expressed as shown in the following table.

In the table there is a column for a mnemonic for the effect, a column
describing the effect more precisely, and a column for the actual score.

Using a numeric score makes it possible to calculate the risk exposure
even when a qualitative scale is used for the effect.

Despite the above example it can be useful to define a scale with an even
number of scores. This can mitigate the effect of some people having a ten-
dency for choosing the middle value if they are not sure what to score or can’t
be bothered to think deeper about their opinion. A scale with an even number
of scores does not have a middle value and the stakeholders will have to de-
cide if they want to score over the middle or under.

The important point before the analysis of the effects can start is that the
stakeholders agree to and understand the scale.

When you perform the analysis of the effect of the risks you have identified,
you must keep your focus on the effect. You must NEVER let the probability influence
the effect! It can sometimes be tempting to give the effect an extra little turn up-
wards if we know (or think) that the probability of the risk materializing is high.
This will give a twisted picture of the risk exposure and should be avoided.

Effect Description Score

Critical Goals cannot be achieved 6

High Goals will be jeopardized 5

Above middle Goals will be significantly affected 4

Below middle Goals will be affected 3

Low Goals will be slightly affected 2

Negligible Goals will be barely noticeably affected 1
Inspired
by Paul Gerrard

Book_samlet.indb 138 2/19/08 8:14:28 PM

3.5 Testing and Risk 139

A simple effect analysis for the
risks pertaining to the four top-
level architectural areas defined
for a product may look like this,
using a scale from 1–6 where 6
is worst.

Often it is not enough to have one single score for the effect. Stakeholders
see the effect from different perspectives. An end user sees the effect in the
light of how a failure will influence his or her daily work. A customer may
look at the effect of failures on the overall business goals. A supplier organi-
zation may assess the effect in terms of correct efforts for failures or loss of
credibility in the market.

These different perspectives can be honored if we use a more complex or
composite effect analysis. The score should be the same for all the perspec-
tives, but the descriptions should be tailored to make sense for each of the
viewpoints.

A composite effect analysis taking more perspectives into account may look
like this:

If the scale is not sufficiently differentiated the individual perspectives
may be assigned independent weights, and the final effect can then be calcu-
lated as the weighted average:

Final effect = ∑(effect*weight) / ∑(weight)

The effect analysis taking more perspectives into account and assigning
different weights to the perspectives may look as shown next.

Risk area Effect

Setup 2

Conveyor 2

Concentration calculation 6

Compound determination 5

Risk area Effect for perspective
Final effect

User Customer Supplier

Setup 5 3 2 3.3

Conveyor 3 3 5 3.7

Concentration
calculation

2 5 2 3

Compound
determination

1 5 3 3

Here all perspectives have the same weight, and the final effect is a simple
average of the effect contributions.

Book_samlet.indb 139 2/19/08 8:14:29 PM

140 Test Management

3.5.3.5 Probability
The probability is the likelihood of the materialization of a risk.

Also here we first of all need to agree on a scale. On a quantitative scale
probability can be measured on a scale from 0 to 1 or a scale from 0% to 100%.
For most risks it is, however, almost impossible to determine the probability
with such a precision.

A qualitative scale for probability is usually much more useful, as long as it
doesn’t get too loose, like “likely,” “very likely,” “extremely likely.”

A qualitative scale could be expressed as in the following table where
there is a column for probability intervals, a column describing the probabil-
ity, and a column for the actual score. Again using a numeric score makes it
possible to calculate the risk exposure even when a qualitative scale is used
for the probability.

For effect, you must keep your focus on the probability when you perform
the analysis of the probability of the risks you have identified. You must NEV-
ER let the effect influence the probability! It can sometimes be tempting to give the
probability an extra little turn upwards if we know (or think) that the effect
of the risk if it materializes is high. This will give an untrue picture of the risk
exposure and should be avoided.

The probability of a risk materializing may be a function of many factors,
for example:

Risk area Effect for perspective

Final effectUser
W=2

Customer
W=7

Supplier
W=1

Setup 5 3 2 3.3

Conveyor 3 3 5 3.2

Concentration
calculation

2 5 2 4.1

Compound
determination

1 5 3 3.9

Probability Description Score

99–82 Highly likely 6

81– Likely 5

–50 Above 50–50 4

49– Below 50–50 3

Low Unlikely 2

–1 Highly unlikely 1
Inspired
by Paul Gerrard

Book_samlet.indb 140 2/19/08 8:14:29 PM

3.5 Testing and Risk 141

 Complexity of the product or the code
 Size of the product or the code
 The producer of the work product(s) or component(s)
 Whether it is a new product or code or maintenance
 The previous defect record for the product or area
 The developers’ familiarity with tools and processes

Just like it is explained for the effect above the final probability can be
calculated as the weighted average of the probabilities pertaining to the dif-
ferent factors.

Final probability = ∑(probability*weight) / ∑(weight)

A composite probability analysis may look like this:

The same quantitative scale must be used for all the factors.

3.5.3.6 Risk Level
The risk level is calculated for each of the identified risks as

Risk level = final effect x final probability

It is not a difficult task to perform a risk analysis as explained above. A
full analysis including identifying about 30 risks and assessing and calculating
the effect, probability, and final level can be done in a couple of hours. It is
well worth the effort because it gives everybody involved a much clearer pic-
ture of why test is necessary and how the test should be planned.

Spreadsheets can be used for easy calculation of the levels and for main-
tenance of the risk analysis.

Using the above examples for final effect and final probability, the final
risk level may look as shown in the following table.

Risk area Probability for factor

Final prob.Size
W=1

History
W=5

Complexity
W=2

Setup 4 2 1 2

Conveyor 5 3 5 3.8

Concentration
calculation

3 1 2 1.5

Compound
determination

3 1 5 2.2

Book_samlet.indb 141 2/19/08 8:14:30 PM

142 Test Management

It sometimes happens that some stakeholders are unhappy with the final level.
If a stakeholder has high rates for a particular risk and the risk comes out
with a relatively low final risk level, this can “seem unfair.” In such cases the
perspectives and the scales will have to be discussed once more.

The point of the perspectives and the scales is that they should satisfy
every stakeholder’s viewpoint. If that is not the case they must be adjusted.
Most of the time, however, stakeholders recognize that the perspectives and
scales are OK and that their viewpoint is fairly overruled by others, different
viewpoints.

The distribution of the final risk level over individual risks is used to plan the test
activities. It can be used to prioritize the test activities and to distribute the
available time and other resources according to the relative risk level. A test
plan based on a risk analysis is more trusted than a plan based on “gut feeling.”

It is difficult to predict events, and therefore all risk analysis has some
built-in uncertainty. A risk analysis must be repeated at regular intervals as the test-
ing progresses.

The testing results can be used as input to the continuous risk analysis.
If we get more defects than expected in a particular area it means that the
probability is higher than we expected, and the area hence has a higher risk
level. On the other hand if we get fewer defects than expected the risk level
is lower.

3.5.4 Risk Mitigation
We use the results of the risk analysis as the basis for the risk mitigation, the
last activity of the sequential risk management activities. “To mitigate” means
“to make or become milder, less severe or less painful.” That is what we’ll try
to do.

Faced with the list of risks and their individual risk level we have to go
through each of the risks and decide:

 What we are going to do
 How we are going to do it
 When we are going to do it

Risk area Final effect Final
probability

Final risk
level

Setup 3.3 2 6.6

Conveyor 3.3 3.8 12.2

Concentration
calculation

4.1 1.5 6.2

Compound
determination

3.9 2.2 8.6

Book_samlet.indb 142 2/19/08 8:14:30 PM

3.5 Testing and Risk 143

3.5.4.1 What to Do to Mitigate Risks
In terms of what to do we have the following choices:

 Do nothing
 Share the pain
 Plan contingency action(s)
 Take preventive action

We can choose to do nothing if the benefit of waiting to see how things
develop is greater than the cost of doing something.

You would not buy a safe for € 1,000 to protect your jewels if they were only
worth € 500 (including the sentimental value). If the jewels were stolen you
could buy new ones and still have money left.

Sharing the pain is outside the scope of testing, but it is a possibility for
the project management or higher management to negotiate sharing the pain
of the effect of a materializing risk with other parties. This other party could
be an insurance company or it could be a supplier or even the customer.

Planning contingency action is a natural part of most risk mitigation. The
contingency action is what we are going to do to mitigate the effect of a risk
once it actually has materialized. For other risk types than product risks and
other processes than testing the response to the risk analysis may be produc-
tion of contingency plans. But it is not something that is applicable in the test
planning for mitigating product risks.

Extra courses are planned if it turns out that the system is more difficult to
learn than expected.

Testing is one of a number of possible preventive actions. The aim is to
mitigate the risks. Testing can be used to mitigate the risk exposure by lowering
or eliminating the probability of the risk.

Product risks are associated with presence of defects. The effect is asso-
ciated with the effect if a defect causes a failure of the product in use. The
probability is associated with the probability of undetected defects still being
present in the product when it is released.

Testing aims at identifying defects by making the product fail—before it
reaches the customer. Defects found in testing can be corrected—before the
system reaches the customer. Hence testing and defect correction reduces the
risk level by reducing the probability.

Book_samlet.indb 143 2/19/08 8:14:30 PM

144 Test Management

3.5.4.2 How to Mitigate Risks by Testing
When we have decided to do something to mitigate a risk, we must find out
what to do. The nature of the risk can be used to determine the phases and
types of testing to perform to mitigate the risk and the level of formality
applied. The decisions must be documented in the applicable test strategy or
test plan.

Certain test phases are especially applicable for certain types of risks. We
need to look at the risk source and determine the phases and activities that
are most likely to unveil defects.

Some examples are given next.

The formality of the test can also be determined from the risk exposure.
The rule is simple:

The higher the risk level => The higher the formality

The formality can change from level to level and it can change over the
product. Some areas can have more formal testing than others, even within
the same test level.

At any level, for example, system testing, we can have the different levels
for formality as shown in the following table.

Risk source Recommended test phases

High risk of defects in algorithms Review of detailed design
 Review of code
 Component testing
 Functional system test

Risk of problems in the user interface Usability evaluation of prototype
 (requirements review)
 Usability test (nonfunctional system
 test)

Risk of performance problems Performance test (nonfunctional
 system test)

Risk concerning external interface Review of design
 Review of code
 System integration test

Book_samlet.indb 144 2/19/08 8:14:31 PM

3.5 Testing and Risk 145

System test

3.5.4.3 When to Mitigate Risks by Testing
We can use the results of the risk analysis to prioritize the test activities that
we have identified for the risks and to distribute the test time (and possibly
other resources).

In the prioritization we are going to determine the order in which to at-
tack the risks. Even if we are not going to perform all the testing activities
identified for the risks in strictly sequential order, it is a help in the planning
to have them prioritized.

The priority can follow the final risk exposure. This means that the final
exposure can be as the sorting criteria. This takes every perspective of the risks
into consideration in one attempt.

 With the example from above the priority of the risk areas can then be as
shown in the following, where 1 is the highest.

The stakeholders could also choose to let the prioritization be guided
by either the final effect or the final probability, or they may even agree to
use one particular perspective, for example, the probability related to the
complexity, to prioritize from.

In order to calculate the distribution of the time to spend on the testing
we need to calculate the sum of the final exposure.

Risk level Recommended test phases

High Specific test case design techniques to be used
 Strict test completion criteria
 Strict regression test procedures

Low Free choice of test case design techniques
 Less strict test completion criteria
 Less strict regression test procedures

Risk area Final risk level Priority

Setup 6.6 3

Conveyor 12.2 1

Concentration calculation 6.2 4

Compound determination 8.6 2

Book_samlet.indb 145 2/19/08 8:14:31 PM

146 Test Management

The next step is to calculate the distribution of the final levels over the
risk areas. This could look as shown here, where the percentages have been
rounded to the nearest whole number.

With a table like this we have a strong planning tool. No matter which
resource we have at our disposal we can distribute it on the risk areas and
hence ensure that each area is indeed tested, but neither more nor less than
it deserves.

If the project manager for example allocates 400 hours for the complete
test of our example system, we can distribute this time over the areas as
shown here:

The list of prioritized risks with their allocated resources and identified
testing phases and activities allows us to produce a substantiated plan and
schedule for the test.

The list also allows us to immediately assess the results of a proposed
change in resource allocation. If the resource we have distributed is cut, we
will have to find out how to make do with what is left.

Risk area Final level

Setup 6.6

Conveyor 12.2

Concentration calculation 6.2

Compound determination 8.6

Total 33.6

Risk area Final level % distribution

Setup 6.6 20 %

Conveyor 12.2 36 %

Concentration calculation 6.2 10 %

Compound determination 8.6 26 %

Total 33.6 100 %

Risk area % distribution Hours for testing

Setup 20 % 80

Conveyor 36 % 144

Concentration calculation 18 % 72

Compound determination 26 % 104

Total 100 400

Book_samlet.indb 146 2/19/08 8:14:32 PM

Questions 147

Usually we are operating with time; having a number of hours allocated
for the testing and consequently a number of hours may be cut. If time is cut
we must ask management what to do with our distribution of time on the
risks. We can’t leave our plan and schedule untouched; the cut must have an
effect. What we can do is, in principle:

 Reduce testing time proportionally to the cut
 Take risk areas out of the testing completely

The best thing to do is to reduce the time proportionally. This ensures that
all areas are still tested, that is, we will get some information relating to all
the risks. We can combine the two approaches but we should be very careful
if we take areas out completely.

If some testing has already been performed, a renewed risk analysis is
necessary before we can act on any cuts. In this case we must distribute the
remaining resources over the remaining risks according the new final exposure
and prioritize as we did before or by a new, more relevant criterion.

Questions
1. How does testing provide business value?
2. What is the purpose of testing?
3. What is product reliability?
4. On what does the cost of defect correction depend?
5. Where do most of the defects originate from?
6. What does good testing provide?
7. What four types of test management documents are defined?
8. What is the purpose of the test policy?
9. What should the test policy include?
10. What could a quality target for example be?
11. What is the purpose of the test strategy?
12. What are the approaches to the testing?
13. What are the strategy topics to be considered?
14. Why may standards be useful?
15. What should a strategy include in relation to risks?
16. Why are completion criteria important?
17. What is the idea in degree of independence?
18. What may be reused in testing?
19. Why does the strategy need to be specific about tools?
20. Why should we measure during testing?
21. To which support process does the incident management belong?
22. What is a master plan for?

Book_samlet.indb 147 2/19/08 8:14:32 PM

148 Test Management

23. What is a level test plan?
24. What are the 14 topics that should be covered in a test plan
 according to IEEE 829?
25. What should the introduction contain?
26. What is the relationship between the test item and features to be
 tested?
27. Why is it important to describe what is not tested?
28. What should the approach description consider?
29. For what are pass/fail criteria used?
30. What may cause a pause in the test execution?
31. What are the typical test deliverables?
32. What is the important thing concerning testing tasks?
33. How can you illustrate who carries which responsibility?
34. In which part of the test plan do the testing tasks, the estimates,
 and the people come together?
35. Who should approve the test plan?
36. What does it mean that a (test) plan must be SMART?
37. What is The New Yorker way of planning?
38. Who may be interested in test reports?
39. What topics should be covered in a test summary report according
 to IEEE 829?
40. What is a comprehensiveness assessment?
41. Who must decide if a test object should be released?
42. What is estimation?
43. What is not estimation?
44. How is test estimation different from ordinary project estimation?
45. What are the six steps in the estimation process?
46. What are the three estimation technique types?
47. On what is the analogy technique based?
48. What are the steps in the Delphi technique?
49. What three estimates do we need for the successive calculation
 estimation technique?
50. What is the estimation based on in the successive calculation
 estimation technique?
51. What are the five things you count for function point calculation?
52. What is the test estimation technique based on function points?
53. What is the difference between all the other techniques and the
 percentage distribution technique?
54. What must be taken into account when defining the finish date for
 a task?
55. When can we stop estimating?

Book_samlet.indb 148 2/19/08 8:14:32 PM

Questions 149

56. What must guide our follow-up activities?
57. What is the virtue in planning?
58. On what should we base our follow-up?
59. How can we present measurements?
60. What is the ink-factor?
61. What is the principle in S-curves?
62. What is a check sheet?
63. What is risk-based reporting?
64. Why should we use statistical reporting for process performance?
65. What must we do to stay in control?
66. What can we do?
67. What is the golden rule of testing?
68. What is a risk?
69. What is risk exposure?
70. What is a process risk?
71. What is a project risk?
72. What could a project risk be?
73. What is a product risk?
74. How does testing relate to risks?
75. What are the activities in risk management?
76. Which stakeholders could be involved in the work with risks?
77. What is a risk template?
78. What could a product risk be?
79. Which risk identification techniques could we use?
80. For what is a risk checklist used?
81. What is the main rule for brainstorms?
82. How must an expert interview be prepared?
83. What is the output from a risk interview?
84. What is risk analysis?
85. How may the viewpoints of risk differ for different roles?
86. What kinds of scales can be used for risk analysis?
87. What must not be done when assessing effect?
88. What is a composite effect analysis?
89. How do you calculate the final effect?
90. What must not be done when assessing probability?
91. Which factors could be used in composite probability assessment?
92. For what is the result of a risk analysis used?
93. How many times should a risk analysis be performed, and why?
94. What is mitigation?
95. What are the actions that can be taken as a result of a risk analysis?
96. Which action is most appropriate for product risks?

Book_samlet.indb 149 2/19/08 8:14:32 PM

150 Test Management

97. Which test activities and test levels could be used to mitigate
 different risks?
98. How are the formality of testing and risk exposures related?
99. How can you prioritize the testing for risks?
100. How can you use risk exposure to distribute testing resources?
101. What can you do if testing time is cut?

Book_samlet.indb 150 2/19/08 8:14:32 PM

4
CHAPTER

Contents

4.1 Specification-Based
 Techniques

4.2 Structure-Based
 Techniques

4.3 Defect-Based
 Techniques

4.4 Experience-Based
 Testing Techniques

4.5 Static Analysis

4.6 Dynamic Analysis

4.7 Choosing Testing
 Techniques

Test Techniques

Test case design techniques are the heart of testing. There are
many advantages of using techniques to design test cases.

They support systematic and meticulous work and make the test-
ing specification effective and efficient; they are also extremely
good for finding possible faults. Techniques are the synthesis of
“best practice”—not necessarily scientifically based, but based on
many testers’ experiences.

Other advantages are that the design of the test cases may be
repeated by others, and that it is possible to explain how test cases
have been designed using techniques. This makes the test cases
much more trustworthy than test cases just “picked out of the
air.” The test case design techniques are based on models of the
system, typically in the form of requirements or design. We can
therefore calculate the coverage we are obtaining for the various
test design techniques.

Coverage is one of the most important ways to express what
is required from our testing activities. It is worth noticing that
coverage is always expressed in terms related to a specific test
design technique. Having achieved a high coverage using one tech-
nique only says something about the testing with that technique,
not the complete testing possible for a given object.

Test case design techniques have a few pitfalls that we need
to be aware of. Even if we could obtain 100% coverage of what
we set out to cover (be it requirements, or statements, or paths),
faults could remain after testing simply because the code does not
properly reflect what the users and customers want. Validation of
the requirements before we start the dynamic testing can mitigate
this risk.

There is also a pitfall in relation to value sensitivity. Even if
we use an input value that gives us the coverage we want it may
be a value for which incidental correctness applies. An example
of this is the fact that:

2 + 2 equals 2 * 2; but 3 + 3 does not equal 3 * 3!

151

Book_samlet.indb 151 2/19/08 8:14:33 PM

4.1 Specification-Based Techniques
The specification-based case design techniques are used to design test cases
based on an analysis of the description of the product without reference to its
internal workings. These techniques are also known as black-box tests.

These techniques focus on the functionality. They are dependent on de-
scriptions of the expectations towards the product or system. These should be
in the form of requirements specifications, but may also be in the form of, for
example, user manuals and/or process descriptions. If we are lucky we get the
requirements expressed in ways corresponding directly to these techniques; if
not we’ll have to help analysts do that during requirements documentation or
do it ourselves during test design.

These test case design techniques can be used in all stages and levels
of testing. The techniques can be used as a starting point in low-level tests,
component testing and integration testing, where test cases can be designed
based on the design and/or the requirements. These test cases can be supplied
with structural or white-box tests to obtain adequate coverage.

The techniques are also very useful in high-level tests like acceptance
testing and system testing, where the test cases are designed from the
requirements.

The specification-based techniques have associated coverage measures,
and the application of these techniques refines the coverage from require-
ments coverage to specific coverage items for the techniques.

The functional test case design techniques covered here are:

 Equivalence partitioning and boundary value analysis
 (Domain analysis—not part of the ISTQB syllabus)
 Decision tables
 Cause-effect graph
 State transition testing
 Classification tree method
 Pairwise testing
 Use case testing
 (Syntax testing—not part of the ISTQB syllabus)

4.1.1 Equivalence Partitioning and Boundary Value
 Analysis
Designing test cases is about finding the input to cover something we want to
test. If we consider the number of different inputs that we can give to a product
we can have anything from very few to a huge amount of possibilities.

Test Techniques152

Book_samlet.indb 152 2/19/08 8:14:34 PM

4.1 Specification-Based Techniques

A product may have only one button and it can be either on or off = 2 pos-
sibilities.

A field must be filled in with the name of a valid postal district = thou-
sands of possibilities.

It can be very difficult to figure out which input to choose for our test
cases. The equivalence partitioning test technique can help us handle situa-
tions with many input possibilities.

4.1.1.1 Equivalence Partitioning
The basic idea is that we partition the input or output domain into equiva-
lence classes.

A class is a portion of the domain. The domain is said to be partitioned into
classes if all members of the domain belong to exactly one class—no member
belongs to more than one class and no member falls outside the classes.

The term equivalence refers to the assumption that all the members in a
class behave in the same way. In this context the assumption is based on the
requirements or other specifications of the product’s expected behavior.

The reason for the equivalence partitioning is that all members in an
equivalence class will either fail or pass the same test. One member represents
all! If we select one member of a class and use that for our test case, we can
assume that we have tested all the members.

Choosing test cases based on equivalence partitioning insures representa-
tive test cases.

If we take a class of pupils and the requirement says that all the girls should
have an e-mail every Thurdays reminding them to bring their swimsuits, we
can partition the class into a partition of girls and a partition of boys and use
one representative from each class in our test cases.

When we partition a domain into equivalence classes, we will usually get
both valid and invalid classes. The invalid classes contain the members that
the product should reject, or in other words members for which the product’s
behavior is unspecified. Test cases should be designed for both the valid and
the invalid classes, though sometimes it is not possible to execute test cases
based on the invalid equivalence classes.

153

Book_samlet.indb 153 2/19/08 8:14:34 PM

The most common types of equivalence class partitions are intervals and
sets of possibilities (unordered list or ordered lists).

Intervals may be illustrated by a requirement stating:

If this is all we know, we have:

Another invalid equivalence class may be inputs containing letters.

To illustrate a set of possibilities we may use the unordered list of hair colors:
(blond, brown, black, red, gray). Perhaps the product can suggest an appro-
priate dye for these colors of hair, but none other. The valid equivalence class
is the list of values; all other values belong to the invalid class, assuming we
don’t know how the product is going to react, if we enter one such value.

It is possible to measure the coverage of equivalence partitions. The equiv-
alence partition coverage is measured as the percentage of equivalence parti-
tions that have been exercised by a test.

To exercise an equivalence class we need to pick one value in the equiva-
lence class and make a test case for this. It is quite usual to pick a value near
the middle of the equivalence class, if possible, but any value will do.

Test cases for the tax percentage could be based on the input values: –5; 234;
810; and 2,207.

For the hair colors we could choose: black and green, as a valid and on
invalid input value, respectively.

4.1.1.2 Boundary Value Analysis
A boundary value is the value on a boundary of an equivalence class. Bound-
ary value analysis is hence strongly related to equivalence class partitioning.
Equivalence classes of intervals have boundaries, but those of lists do not.
Boundary value analysis is the process of identifying the boundary values.

Income in € Tax percentage

Up to and including 500 0

More than 500, but less than 1,300 30

1,300 or more, but less than 5,000 40

invalid
class

0 500 1,300

valid
equivalence
class

valid
equivalence
class

invalid
equivalence
class

Test Techniques154

Book_samlet.indb 154 2/19/08 8:14:35 PM

The boundary values require extra attention because defects are often
found on or immediately around these. Choosing test cases based on bound-
ary value analysis insures that the test cases are effective.

For interval classes with precise boundaries, it is not difficult to identify
the boundary values.

The interval given as: 0 <= income <= 500, is one equivalence class with the
two boundaries 0 and 500.

If a class has an imprecise boundary (> or <) the boundary value is one
increment inside the imprecise boundary.

If the above interval had been specified as: 0 <= income < 500, and the
smallest increment is given as 1, we would have an equivalence class with the
two boundaries 0 and 499.

The smallest increment should always be specified; otherwise we must
ask or guess based on common or otherwise available information.

It is often not specified what the increment is when we are dealing with mon-
ey. A reasonable guess is that if we operate in euros (€), then the smallest
increment is € 0.01 or 1 cent. But beware! Tax people usually use € 1 as the
smallest increment.

Sometimes we’ll experience equivalence classes with open boundaries—
classes where a boundary is not specified. This makes it difficult to identify a
boundary value to test. In these cases we must first of all try to get the speci-
fication changed. If that is not possible we can look for information in other
requirements, look for indirect or hidden boundaries, or omit the testing of
the nonexisting boundary value.

Open boundaries may be seen in connection with people’s incomes. If the
above interval had to do with incomes we may argue that the lowest income
is € 0. But what is the real upper boundary? There is no obvious upper bound-
ary for people’s income.

Because we can have both valid and invalid equivalence classes we can
also have both valid and invalid boundary values, and both should be tested.
Sometimes, however, the invalid ones can not be tested.

When we select boundary values for testing, we must select the boundary
value and at least one value one unit inside the boundary in the equivalence
class. This means that for each boundary we test two values.

In traditional testing it was also recommended to choose a value one unit

1554.1 Specification-Based Techniques

Book_samlet.indb 155 2/19/08 8:14:35 PM

outside the equivalence class, hence testing three values for each boundary.
Such a value is in fact a value on the border of the adjacent equivalence class,
and some duplication could occur. But we can still choose to select three values;
the choice between two or three values should be governed by a risk evaluation.

It is possible to measure the coverage of boundary values. The boundary
value coverage is measured as the percentage of boundary values that have
been exercised by a test.

Equivalence Partitioning and Boundary Value
Analysis Test Design Template
The design of the test conditions based on equivalence class partitioning and
boundary value analysis can be captured in a table such as the following one.

The fields in the table are:
Test design item number: Unique identifier of the test design item
Traces: References to the requirement(s) or other descriptions covered
by this test design
Based on: Input/Output: Indication of which type of domain the
design is based on
Assumptions: Here any assumption must be documented.
For each test condition we have the following fields:
Type: Must be one of

 VC—Valid class
 IC—Invalid class
 VB—Valid boundary value
 IB—Invalid boundary value

Remember that the invalid values should be rejected by the system.
Description: The specification of the test condition
Tag: Unique identification of the test condition
BT = Belongs to: Indicates the class a boundary value belongs to. This
can be used to cross-check the boundary values.

Test design item number: Traces:

Based on: Input/Output Assumptions:

Type Description Tag BT
Table designed
by Carsten
Jørgensen

Test Techniques156

Book_samlet.indb 156 2/19/08 8:14:35 PM

Equivalence Partitioning and Boundary Value
Analysis Test Design Examples

In this example we shall find test conditions and test cases for the testing of
this user requirement.

[UR 631] The system shall allow shipments for which the price is less
than or equal to € 100.

The first thing we’ll do is fill in the header of the design table.

The next thing is identifying the valid class(es).

We then consider if there are any invalid classes. If we only have the single
requirement given above, we can identify two obvious and two special invalid
equivalence classes. The new rows are indicated in bold.

Our boundary value analysis gives us two boundary values.

Test design item number: 11 Traces: [UR 631]

Based on: Input Assumptions:
The price cannot be negative
The smallest increment is 1 cent

Type Description Tag BT

VC 0 <= shipment price <= 100

Type Description Tag BT

IC shipment price < 0

VC 0 <= shipment price <= 100

IC shipment price > 100

IC shipment price is empty

IC shipment price contains characters

1574.1 Specification-Based Techniques

Book_samlet.indb 157 2/19/08 8:14:36 PM

This concludes the equivalence class partitioning and boundary value
analysis for the first requirement. We will complete the table by adding tags
and indicating to which classes the boundary values belong.

We can now make low-level test cases. If we want 100% equivalence par-
tition coverage and two value boundary value coverage for the requirement,
assuming that invalid values are rejected, we get the following test cases:

Type Description Tag BT

IC shipment price < 0

IB shipment price = –0.01

VB shipment price = 0.00

VC 0 <= shipment price <= 100

VB shipment price = 100.00

IC shipment price > 100

IB shipment price = 100.01

IC shipment price is empty

IC shipment price contains characters

Test design item number: 11 Traces: [UR 631]

Based on: Input Assumptions:
The price cannot be negative
The smallest increment is 1 cent

Type Description Tag BT

IC shipment price < 0 11-1

IB shipment price = –0.01 11-2 11-1

VB shipment price = 0.00 11-3 11-4

VC 0 <= shipment price <= 100 11-4

VB shipment price = 100.00 11-5 11-4

IC shipment price > 100 11-6

IB shipment price = 100.01 11-7 11-6

IC shipment price is empty 11-8

IC shipment price contains characters 11-9

Test Techniques158

Book_samlet.indb 158 2/19/08 8:14:36 PM

Tag Test
case

Input
Price=

Expected output

11-1 TC1-1 –25.00 rejection

11-2 TC1-2 0.02 rejection

11-2 TC1-3 –0.01 rejection

11-3 TC1-4 0.00 OK

11-3 TC1-5 0.01 OK

11-4 TC1-6 47.00 OK

11-5 TC1-7 99.99 OK

11-5 TC1-8 100.00 OK

11-7 TC1-9 100.01 rejection

11-7 TC1-10 100.02 rejection

11-6 TC1-11 114.00 rejection

11-8 TC1-12 “ ” rejection

11-9 TC1-13 “abcd.nn” rejection

We could choose to omit some of the test cases, especially since we actu-
ally get five different test cases covering the same equivalence class.

In the next example we will test the following requirement:
[UR 627] The system shall allow the packing type to be specified as either

“Box” or “Wrapping paper.”
The test design table looks like this after the analysis.

This type of equivalence class does not have boundaries.
The test cases could be:

It is only necessary to test one of the valid packing types, because it is a
member of an equivalence class.

Test design item number: 15 Traces: [UR 627]

Based on: Input Assumptions:

Type Description Tag BT

VC “Box”
“Wrapping paper”

15-1

IC All other texts 15-2

Tag Test case Input packing type Expected output

15-1 TC3-1 “Box” OK

15-2 TC3-2 “Paper” rejection

1594.1 Specification-Based Techniques

Book_samlet.indb 159 2/19/08 8:14:37 PM

Equivalence Partitioning and Boundary
Value Analysis Hints
The equivalence partitioning and boundary value analysis of requirements
makes it possible for us to:

 Reduce the number of test cases, because we can argue that one
 value from each equivalence partition is enough.
 Find more faults because we concentrate our focus on the
 boundaries where the density of defects, according to all experience,

 is highest.

Sometimes the input or output domains we are testing do not have one-
dimensional boundaries as assumed in the equivalence class partitioning and
boundary value analysis as described here.

If it is not possible or feasible to partition our input or output domain in
one dimension we have to use the technique called domain analysis instead.

4.1.2 Domain Analysis
Note: This technique is not part of the ISTQB syllabus, but included here because I find
it interesting and occasionally useful.

In equivalence partitioning of intervals where the boundaries are given
by simple numbers, we have one-dimensional partitions. The domain analy-
sis test case design technique is used when our input partitions are multi-
dimensional, that is when a border for an equivalence partition depends on
combinations of aspects or variables. If two variables are involved we have a
two-dimensional domain; if three are involved, we have a three-dimensional
domain, and so on.

Multidimensional partitions are called domains—hence the name of the
technique, even though the principles are the same as in equivalence parti-
tioning and boundary value analysis.

It is difficult for people to picture more than three dimensions, but in
theory there is no limit to the number of dimensions we may have to handle
in domain analysis. We will use two-dimensional domains in the section; the
principles are the same for any number of dimensions.

For equivalence partitioning we had the example of intervals of income groups,
where 0.00 <= income < 5,000.00 is tax-free. This is a one-dimensional
domain. If people’s capital counts in the calculation as well, so that income is
only tax-free if it is also less than twice the capital held by the person in ques-
tion, we have a two-dimensional domain.

Test Techniques160

Book_samlet.indb 160 2/19/08 8:14:37 PM

The two-dimensional domain for tax-free income is shown as the striped area
(assuming that the capital and the income are both ≥ 0.00):

Borders may be either open or closed. A border is open, if a value on the
border does not belong to the domain we are looking at. This is the case in the
example where both the borders are open (income < 5,000.00 and income <
2 x capital).

A border is closed if a value on the border belongs to the domain we are
looking at.

If we change the border for tax-free income to become: income <= 2 x
capital, we have a closed border. In this case our domain
will look like this:

In equivalence partitioning we say that a value is in a particular equiva-
lence class—in a way we do the same for domain analysis, though here we
operate with points relative to the borders:

 A point is an In point in the domain we are considering, if it is inside
 and not on the border

 A point is an Out point to the domain we are considering, if it is out-
 side and not on the border (it is then in another domain)

Income

Capital Income = 2 x Capital
Income = 5,000.00

Capital Income = 2 x Capital
Income = 5,000.00

1614.1 Specification-Based Techniques

Book_samlet.indb 161 2/19/08 8:14:38 PM

An In point and an Out point relative to the border income <= 2 x capital
are illustrated here.

In the boundary value analysis related to equivalence partitioning de-
scribed above, we operate with the boundary values on the boundary and one
unit inside. In domain analysis we operate with On and Off points relative to
each border.

We have:

 A point is an On point if it is on the border between partitions
 A point is an Off point if it is “slightly” off the border

If the border of the domain we are looking at is closed, the Off point
will be outside the domain. The “slightly” may be one unit relative to what
measure we are using, so that the Off point lies on the border of the adjacent
domain. This works for all practical purposes, as long as we are not working
with a floating point where “one unit” is undeterminable; in this case the
“slightly” will have to be far enough away from the border to ensure that the
Off point is inside the adjacent domain.

For the closed border of Income <= 2 x Capital, the border of the adjacent
domain is shown here with an On and an Off point.

If the border of the domain we are looking at is open, the Off point will
be “slightly” (or perhaps one unit) inside the domain, namely, outside (or on)
the closed border of the adjacent domain.

Capital Income = 2 x Capital
Out

In

Income = 5,000.00

Capital
Income = 2 x Capital

OnOff

Income = 5,000.00

Test Techniques162

Book_samlet.indb 162 2/19/08 8:14:38 PM

In our case with the income < 5,000.00 an On point and an Off point may
look like this:

Domain Analysis Strategy
The number of test cases we can design based on a domain analysis depends
on the test strategy we decide to follow. A strategy can be described as:

N-On * N-Off
where N-On is the number of On points we want to test for each border and
N-Off correspondingly is the number of Off points we want to test for each
border for the domains we have identified.

If we choose a 1 * 1 strategy we therefore set out to test one On point and
one Off point for each border of the domains we have identified. This is what
is illustrated above for the one domain we are looking at (not taking the capi-
tal>=0 border into account). If our strategy is 2 * 1, we set out to test two On
points and one Off point for each of the borders for all the domains we have
identified. In this case the On points will be the points where the borders cross
each other, that is the extremes of the borders.

In a 1 * 1 strategy we will get two test cases for each border. If we are test-
ing adjacent domains, we will get equivalent test cases because an Off point in
one domain is an In point in the adjacent domain. These test cases will have
identical expected outcomes if identical values are chosen for the low-level
test cases. These duplicates need not be repeated in the test procedures for
execution.

Domain Analysis Coverage
It is possible to measure the coverage for domain analysis. The coverage
elements for the identified domains are the In points and the Out points. The
coverage is measured as the percentage of In points and Out points that have
been exercised by a test. Do not count an In point in one partition being an
Out point in another partition to be tested twice.

The coverage elements for the borders are the On points and Off points.
The coverage is measured as the percentage of On points and Off points
that have been exercised by a test relative to what the strategy determines
as the number of points to test. Again do not count duplicate points twice.

Capital
Income = 2 x Capital

OnOff

Off

Income = 5,000.00

1634.1 Specification-Based Techniques

Book_samlet.indb 163 2/19/08 8:14:39 PM

Domain Analysis Test Design Template
The design of the test conditions based on domain analysis and with the aim
of getting On and Off point coverage can be captured in a table like this one.

The table is for one domain; and it must be expanded both in the length
and width to accommodate all the borders our domain may have.

The rule is: divide and conquer.
For each of the borders involved we should:

 Test an On point
 Test an Off point

If we want In point and Out point coverage as well, we must include this
explicitly in the table.

When we start to make low-level test cases we add a row for each variable
to select values for. In a two-dimensional domain we will have to select values
for two variables.

For each column we select a value that satisfies what we want. In the first
column of values we must select a value for X and a value for Y that gives us
a point On border 1. We should aim at getting In points for the other borders
in the column, though that is not always possible. For each of the borders we
should note which kind of point we get for the selected set of values.

This selection of values can be quite difficult, especially if we have high-
dimensional domains. Making the table in a spreadsheet helps a lot, and other
tools are also available to help.

Tag

Border 1 condition ON OFF

Border 2 condition ON OFF

Border n condition ON OFF

Tag

Border 1 condition ON OFF

Border 2 condition ON OFF

Border n condition ON OFF

Variable X

Variable Y

Table designed
by Carsten
Jørgensen

Test Techniques164

Book_samlet.indb 164 2/19/08 8:14:39 PM

Domain Analysis Test Design Example

In this example we shall test this user requirement:
[UR 637] The system shall allow posting of envelopes where the longest

side (l) is longer than or equal to 12 centimeters, but not longer than 75 cen-
timeters. The smallest side (w) must be longer than or equal to 1 centimeter.
The length must be twice the width and must be greater than or equal to 10
centimeters. Measures are always rounded up to the nearest centimeter. All
odd envelopes are to be handled by courier.

We can rewrite this requirement to read:
length >= 12
length < 75
width >= 1
length – 2 x width >= 10
This can be entered in our template:

In the table we have entered values for the first test case, namely length
= 12 to get the On point for the first border condition. The simultaneous
selecting of width = 1 gives the points indicated for each border in lowercase
under the number.

Tag TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Length > = 12 ON
12

OFF

Length < 75 12
IN

ON OFF

Width > = 1 1
IN

ON OFF

1 – 2 x w > = 10 10
ON

ON OFF

Length 12

Width 1

1654.1 Specification-Based Techniques

Book_samlet.indb 165 2/19/08 8:14:40 PM

The table fully filled in may look like this:

We now need to determine the expected results, and then we have our
test cases ready.

4.1.3 Decision Tables
A decision table is a table showing the actions of the system depending on
certain combinations of input conditions.

Decision tables are often used to express rules and regulations for embed-
ded systems and administrative systems. They seem to have gone a little out
of fashion, and that is a shame. Decision tables are brilliant for overview and
also for determining if the requirements are complete.

It is often seen that what could have been expressed in a decision table is
attempted to be explained in text. The text may be several paragraphs or even
pages long and reformatting of the text into decision tables will often reveal
holes in the requirements.

Decision tables are useful to provide an overview of combinations of inputs
and the resulting output. The combinations are derived from requirements,
which are expressed as something that is either true or false. If we are lucky
the requirements are expressed directly in decision tables where appropriate.

Decision tables always have 2n columns, because there are always 2n com-
binations, where n is the number of input conditions.

The number of rows in decision tables depends on the number of input
conditions and the number of dependent actions. There is one row for each
condition and one row for each action.

Tag TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

Length > = 12 ON
12

OFF
11

75
in

74
in

15
in

15
in

30
in

31
in

Length < 75 12
IN

11
in

ON
75

OFF
74

15
in

15
in

30
in

31
in

Width > = 1 1
in

1
in

30
in

30
in

ON
1

OFF
0

10
in

11
in

1 – 2 x w > = 10 10
on

9
out

15
in

14
in

13
in

15
in

ON
10

OFF
9

Length 12 11 75 74 15 15 30 31

Width 1 1 30 30 1 0 10 11

Test Techniques166

Book_samlet.indb 166 2/19/08 8:14:40 PM

The table is read one column at a time. We can, for example, see that if
both input conditions are true then both actions will happen (be true).

The coverage measure for decision tables is the percentage of the total number
of combinations of input tested in a test.

Sometimes it is not possible to obtain 100% combination coverage because
it is impossible to execute a test case for a combination.

4.1.3.1 Decision Table Templates
The template to capture decision table test conditions in is the template for
the decision table itself with a test design header, as shown next.

The fields in the table are:

Test design item number: Unique identifier of the test design item
Traces: References to the requirement(s) or other descriptions covered
by this test design
Assumptions: Here any assumption must be documented

The table must have a row for each input and each action, and 2n columns,
where n is the number of input conditions. The cells are filled in with either True
or False to indicate if the input conditions, respectively the actions are true or false.

The easiest way to fill out a decision table is to fill in the input condition rows
first. For the first input condition half of the cells are filled with True and the second
half are filled with False. In the next row half of the cells under the Ts are filled with
True and the other half with False, and likewise for the Fs. Keep on like this until
the Ts and Fs alternate for each cell in the last input condition row.

The values for the resulting actions must be extracted from the requirements!

Input condition 1 T T F F

Input condition 2 T F T F

Action 1 T T F F

Action 2 T T T F

Test design item number: Traces:

Assumptions:

TC1 TC2 TCn

Input condition 1

Input condition n

Action 1

Action n

1674.1 Specification-Based Techniques

Book_samlet.indb 167 2/19/08 8:14:41 PM

4.1.3.2 Decision Table Example

In this example we are going to test the following requirements.
[76] The system shall only calculate discounts for members.
[77] The system shall calculate a discount of 5% if the value of the pur-

chase is less than or equal to € 100. Otherwise the discount is 10%.
[78] The system shall write the discount % on the invoice.
[79] The system must write in the invoices to nonmembers that member-

ship gives a discount.

Note that we are only going to test the calculation and printing on the
invoice, not the correct calculation of the discount.

The test cases to execute can now be created from these test conditions
and written directly into a test procedure.

Test design item number: 82 Traces: Req. [76]–[79]

Assumptions: The validity of the input is tested elsewhere

TC1 TC2 TC3 TC4

Purchaser is member T T F F

Value <= € 100 T F T F

No discount calculated F F T T

5% discount calculated T F F F

10% discount calculated F T F F

Member message on invoice F F T T

Discount % on invoice T T F F

Test procedure: 11

Purpose: This test procedure tests the calculation of discount for members.
Traces: Req. [76]–[79]

Tag TC Input Expected output

TC1 1 Choose a member and cre-
ate a purchase with a value
less than € 100

A discount of 5% is calculated and
this is written on the invoice.

TC2 2 Choose a member and cre-
ate a purchase with a value
of more than € 100

A discount of 10% is calculated
and this is written on the invoice.

TC3 3 Choose a nonmember and
create a purchase with a
value less than € 100

No discount is calculated and
the “membership gives discount”
statement is written on the invoice.

Test Techniques168

Book_samlet.indb 168 2/19/08 8:14:41 PM

4.1.3.3 Collapsed Decision Tables
Sometimes it seems evident in a decision table that some conditions are with-
out effect because one decision is decisive. For example if one condition is
False an action seems to be False no matter what the values of all the other
conditions are.

This could lead us to collapse the decision table, that is reduce the num-
ber of combinations by only taking one of those where the rest will give the
same result. This technique is related to the condition determination testing
discussed below in Section 4.2.6.

The decision as to whether to collapse a decision table or not should be
based on a risk analysis.

4.1.4 Cause-Effect Graph
A cause-effect graph is a graphical way of showing inputs or stimuli (causes)
with their associated outputs (effects). The graph is a result of an analysis of
requirements. Test cases can be designed from the cause-effect graph.

The technique is a semiformal way of expressing certain requirements,
namely requirements that are based on Boolean expressions.

The cause-effect graphing technique is used to design test cases for func-
tions that depend on a combination of more input items.

In principle any functional requirement can be expressed as:

f(old state, input) à (new state, output)

This means that a specific treatment (f = a function) for a given input
transforms an old state of the system to a new state and produces an output.

We can also express this in a more practical way as:

f(ops1, ops2,…, i1, i2,..i) à (ns1, ns2,..,o1, o2..)

where the old state is split into a number of old partial states, and the input
is split into a number of input items. The same is done for the new state and
the output.

The causes in the graphs are characteristics of input items or old partial
states. The effects in the graphs are characteristics of output items or new
partial states.

Both causes and effects have to be statements that are either True or False.
True indicates that the characteristic is present; False indicates its absence.

The graph shows the connections and relationships between the causes
and the effects.

1694.1 Specification-Based Techniques

Book_samlet.indb 169 2/19/08 8:14:42 PM

4.1.4.1 Cause-Effect Graph Coverage
The coverage of the cause-effect graph can be measured as the percentage of
all the possible combinations of inputs tested in a test suite.

4.1.4.2 Cause-Effect Graphing Process and Template
A cause-effect graph is constructed in the following way based on an analysis
of selected suitable requirements:

 List and assign an ID to all causes
 List and assign an ID to all effects
 For each effect make a Boolean expression so that the effect is
 expressed in terms of relevant causes
 Draw the cause-effect graph

An example of a cause-effect graph is shown here.

The graph is composed of some simple building blocks:

 Identified cause or effect—Must be labeled with the corresponding ID.
It is a good idea to start the IDs of the causes with a C and those of the ef-
fects with an E. Intermediate causes may also be defined to make the graph
simpler.

 Connection between cause(s) and effect—The connection always
goes from the left to the right.

^ This means that the causes are combined with AND, that is all causes
must be True for the effect to be True.

v This means that the causes are combined with OR, that is only one cause
needs to be True for the effect to be True.

C2

C3

C1 I11

>

>

E72

>

E70

E71

Test Techniques170

Book_samlet.indb 170 2/19/08 8:14:42 PM

^

 This is a negation, meaning that a True should be understood
as a False, and vice versa.

 The arch shows that all the causes (to the left
 of the connections) must be combined with the
 Boolean operator; in this case the three
 causes must be “AND’et.”
Test cases may be derived directly from the graph. The graph may also be

converted into a decision table, and the test cases derived from the columns
in the table.

Sometimes constraints may apply to the causes and these will have to be
taken into consideration as well.

4.1.4.3 Cause-Effect Graph Example

In this example we are going to test a Web page, on which it is possible to sign
up for a course. The Web page looks like this:

First we make a complete list of causes with identification. The causes are
derived from a textual description of the form (not included here):

C1. Name field is filled in
C2. Name contains only letters and spaces
C3. Address field is filled in
C4. Zip code is filled in
C5. City is filled in
C6. Course number is filled in
C7. Course number exists in the system

04-10.pdf 28-10-2007 11:14:40

1714.1 Specification-Based Techniques

Book_samlet.indb 171 2/19/08 8:14:42 PM

An intermediate Boolean may be introduced here, namely I30 meaning
that all fields are filled in. This is expressed as:

I30 = and (C1, C3, C4, C5, C6)
The full list of effects with identification is:
E51. Registration of delegate in system
E52. Message shown: All fields should be filled in
E53. Message shown: Only letters and spaces in name
E54. Message shown: Unknown course number
E55. Message shown: You have been registered
We must now express each effect as a Boolean expression based on the

causes. They are:
E51 = and(I30, C2, C7)
E52 = not I30
E53 = and(I30, not C2)
E54 = and(I30, C2, not C7)
E55 = E51

Drawing the causes and the effects and their relationships gives us the
cause-effect graph. Test cases can be designed directly from the graph.

4.1.4.4 Cause-Effect Graph Hints
The cause-effect graph test case design technique is very suitable for people
with a graphical mind.

C2

C6

C3

C1

C7

C4

C5

I30

>

>
>

E55

E51

E52

E53

E54>

04-11.pdf 28-10-2007 11:34:13

Test Techniques172

Book_samlet.indb 172 2/19/08 8:14:43 PM

For others it may be a help in the analysis phase and the basis for the
construction of a decision table from which test cases can be described as
discussed above.

All the effects can be filled into the decision table by looking at the cause-
effect graph or even from the Boolean expressions directly. Fill in all com-
binations of True and False for the causes, and then fill in the impact each
combination has on the effects.

Cause-effect graphs frequently become very large—and therefore difficult
to work with. To avoid this divide the specification into workable pieces of
isolated functionality.

To mitigate the size problem we can select different ways to reduce the
decision table, such as removal of impossible combinations. We can also re-
duce the combinations by only keeping those that independently affect the
outcome, like in condition determination testing, discussed in Section 4.2.6.

4.1.5 State Transition Testing
State transition testing is based on a state machine model of the test object.
State machine modeling is a design technique, most often used for embed-
ded software, but also applicable for user interface design. If we are lucky we
get the state machine model as part of the specification we are going to test
against. Otherwise we will have to extract it from the requirements.

Most products and software systems can be modeled as a state machine.
The idea is that the system can be in a number of well-defined states. A state
is the collection of all features of the system at a given point in time, including
all visible data, all stored data, and any current form and field.

The transition from one state to another is initiated by an event. The sys-
tem just sits there doing nothing until an event happens. An event will cause
an action and the object will change into another state (or stay in the same
state).

A transition = start state + event + action + end state
The principle in a state machine is illustrated next.

Input

Output

State 1 Event

Action

State 2
Transition

1734.1 Specification-Based Techniques

Book_samlet.indb 173 2/19/08 8:14:43 PM

State machines can be depicted in many ways. The figure below shows
a state machine presentation of a report printing menu, where the states are
depicted as circles and the events and actions are written next to the transi-
tions depicted as arrows.

It is a good idea to leave the states blank and just give them an identifica-
tion, typically in the form of a number. The events, actions, and transitions
should also be identified.

Note that the state machine has a start state. This could be a transition
from another state machine describing another part of the full system.

4.1.5.1 State Transition Testing Coverage
Transitions can be performed in sequences. The smallest “sequence” is one
transition at a time. The second smallest sequence is a sequence of two transi-
tions in a row. Sequences can be of any length.

The coverage for state transition testing is measurable for different lengths
of transition sequences. The state transition coverage measure is:

Chows n-switch coverage

where n = sequential transitions – 1.
We could also say that N = no. of “in-between-states.”
Chows n-switch coverage is the percentages of all transition sequences of

should also be identified.

Show
start
menu

Show
report
menu

add report
on screen

Start

Select
“Cancel”

“OK”
selected

Add “canncel
report popp-up”

“Cancel”
selected

“OK”
selected

“Show
report”

sselectedmenu
item

“Report”
selectedd

remove pop-up
remove report menu

show start menu

remove
pop-upp

remove
report

on
screen

“Print”
selected

send print
job to
printer
remove
report on
screen

Test Techniques174

Book_samlet.indb 174 2/19/08 8:14:44 PM

n-1 transitions’ length tested in a test suite.
State transition testing coverage is measured for valid transitions only.

Valid transitions are transitions described in the model. There may, however,
also be invalid, or so-called null-transitions and these should be tested as
well.

4.1.5.2 State Transition Testing Templates
A number of tables are used to capture the test conditions during the analysis
of state transition machines.

To obtain Chows 0-switch coverage, we need a table showing all single
transitions. These transitions are test conditions and can be used directly as
the basis for test cases. A simple transition table is shown next.

The fields in the table are:

Test design item number: Unique identifier of the test design item
Traces: References to the requirement(s) or other descriptions covered
by this test design
Assumptions: Here any assumption must be documented
The table must have a column for each of the defined transitions
(three are shown here). The information for each transition must be:
Transition: The identification of the transition
Start state: The identification of the start state (for this transition)
Input: The identification or description of the event that triggers the
transition
Expected output: The identification or description of the action
connected to the transition
End state: The identification of the end state (for this transition)

Testing to 100% Chows 0-switch coverage detects simple faults in transi-
tions and outputs.

To achieve a higher Chows n-switch coverage we need to describe the
sequences of transitions.

The table to capture test conditions for Chows 1-switch coverage is shown
next.

* the “start”and
 “end” states are
 for each specific
 transition (test
 condition) only,
 not the state
 machine

Test design item number: Traces:

Assumptions:

Transition

Start state*

Input

Expected output

End state*

1754.1 Specification-Based Techniques

Book_samlet.indb 175 2/19/08 8:14:44 PM

Here we have to include the intermediate state and the input to cause the
second transition in each sequence. Again we need a column for each set of
two transitions in sequence.

If we want an even higher Chows n-switch coverage we must describe test
conditions for longer sequences of transitions.

As mentioned above we should also test invalid transitions. To identify these
we need to complete a state table. A state table is a matrix showing the rela-
tionships between all states and events, and resulting states and actions.

A template for a state table matrix is shown below. The matrix must have
a row for each defined state and a column for each input (event). In the cross-
cell the corresponding end state and actions must be given.

An invalid transaction is defined as a start state where the end state and
action is not defined for a specific event. This should result in the system stay-
ing in the start state and no action or a null-action being performed, but since
it is not specified we cannot know for sure.

The “End state / Action” for invalid transitions must be given as the iden-
tification of the start state / “N” or the like.

A test condition can be identified from this table for each of the invalid
transitions.

Test design item number: Traces:

Assumptions:

Transition pair

Start state*

Input

Expected output

Intermediate state*

Input

Expected output

End state*

Input
Start state

End state / Action

Test Techniques176

Book_samlet.indb 176 2/19/08 8:14:45 PM

4.1.5.3 State Transition Testing Example

In this example we are going to identify test conditions and test cases for the
state machine shown here.

Don’t worry about what the system is doing—that is not interesting from a testing
point of view.

The drawing of the state machine shows the identification of the states,
the events (inputs), the actions (outputs), and the transitions. The descrip-
tions of the inputs and outputs are given to the right of the drawing.

First of all we have to define test conditions for all single transitions to get
Chows 0-switch coverage.

State 1 I1

O1

State 2
T1

State 3

I2

O2
T2

I2

O3
T3

I1

O1
T4

I1 = Push button A

I2 = Push button B

O1 = Bib

O2 = Light on

O3 = Light off

Start

04-14.pdf 28-10-2007 14:09:50

Test design item number: 2.4 Traces: State machine 1.1

Assumptions: None

Transition T1 T2 T3 T4

Start state* S1 S1 S2 S3

Input I1 I2 I2 I1

Expected output O1 O2 O3 O1

End state* S2 S3 S1 S2

1774.1 Specification-Based Techniques

Book_samlet.indb 177 2/19/08 8:14:45 PM

Identification of sequences of two transitions to achieve Chows 1-switch
coverage results in the following table.

We will not go further in sequences.
The next thing will be to identify invalid transitions. To do this we fill in

the state table. The result is:

We have two invalid transitions:
State 2 + Input 1 and State 3 + Input 2.
The test cases to execute can now be created from these test conditions

and written directly into a test procedure.

Test design item number: 2.5 Traces: State machine 1.1

Assumptions: None

Transition pair T1/T3 T1/T3 T3/T2 T2/T4 T4/T3

Start state* S1 S2 S2 S1 S3

Input I1 I2 I2 I2 I1

Expected output O1 O3 O3 O2 O1

Intermediate state* S2 S1 S1 S3 S2

Input I2 I1 I2 I1 I2

Expected output O3 O1 O2 O1 O3

End state* S1 S2 S3 S2 S1

Input
Start state

I1 I2

S1 S2/O2 S3/O2

S2 S2/N S1/O3

S3 S2/O1 S3/N

Test procedure: 3.5

Purpose: This test procedure tests single valid and invalid transitions.
Traces: State machine 1.1

Prerequisites: The system is in State 1

Expected duration: 5 minutes

Tag TC Input Expected output

T1 2 Reset to state 1 + push button B The system bibs + state 2

T2 Reset to state 1 + push button B The light is on + state 3

IV2 Push button B again Nothing changes

T4 Push button A The system bibs + state 2

IV1 Push button A again Nothing changes

T3 Push button B The light is off + state 1

Test Techniques178

Book_samlet.indb 178 2/19/08 8:14:46 PM

4.1.5.4 State Transition Testing Hints
We should try to avoid invalid transitions by defining the results of invalid
events. This is called defensive design, and it is a design activity.

If it is not practical to define all possible state and event combinations ex-
plicitly, we should encourage the designers to define a default for truly invalid
situations. It could for example be defined that all null-transitions should
result in a warning.

One of the difficulties of state machine is that they can become extremely
complex faster and more often than you imagine. State machines can be
defined in several levels to keep the complexity down, but this is a design
decision.

4.1.6 Classification Tree Method
The classification tree method is a way to partition input and state domains
into classes. The method is similar to equivalence partitioning, but can handle
more complex situations where input or output domains can be looked at
from more than one point of view.

The idea in the classification tree method is that we can partition a domain
in several ways and that we can refine the partitions in a stepwise fashion.
Each refinement is guided by a specific aspect or viewpoint on the domain at
hand.

The result is a classification tree like the one shown here.

There are two types of nodes in the tree

 (Sub)domain nodes
 Aspect nodes

The two types must always alternate.

1794.1 Specification-Based Techniques

Book_samlet.indb 179 2/19/08 8:14:46 PM

The domain is the full collection of all possible inputs and states at
any given level in the tree. The state is a very broad term here; it means any-
thing that characterizes the product at a given point in time and includes for
example which window is current, which field is current, and all data relevant
for the behavior both present on the screen and stored “behind the screen.”

The aspect is the point of view you use when you are performing
a particular partitioning of the domain you are looking at. It is very important
to be aware that it is possible to look at the same domain in different ways
(with different aspects) and get different subdomains as the result. This is
why there can be more aspects at the same level in the classification tree and
more subdomains at the same level (under the aspects) as well.

An ordinary deck of cards (without jokers) can be viewed and hence parti-
tioned in different ways. The aspects could be:

 Suit (spades, hearts, diamonds, clubs)
 Picture or number

The classification tree resulting from this analysis would look like this:

There are a few rules that need to be observed when we make the clas-
sification tree. Under a given aspect:

 Any member of the domain must fit into one and only one subdomain
 under an aspect—it must not be possible to place a member in two
 or more subdomains
 All the members of the domain must fit into a subdomain—no member
 must fall outside the subdomains

If we look at the “suit” aspect above, no card can be in two suits, and all cards
belong to a suit.

When we create a classification tree we start at the root domain (which is
highest in the graph!). This is always the full input and state domain for the
item we want to examine. We must then:

all
cards

suits picture

P N

04-16.pdf 28-10-2007 14:49:19

Test Techniques180

Book_samlet.indb 180 2/19/08 8:14:47 PM

 Look at the domain and decide on the views or aspects we want to
 use on the domain

 For each of these aspects
	 Partition the full root domain into classes. Each class is
 a subdomain.
	 For each subdomain (now a full domain in its own right)
	 	 Decide aspects that will result in a new partitioning
	 	 For each aspect
	 	 And so on

At a certain point it is no longer possible or sensible to apply aspects to a
domain. This means that we have reached a leaf of the tree. The tree is fin-
ished when all our subdomains are leaves (the lowest in the graph!).

Leaves can be reached at different levels in the classification tree. The tree
does not have to be symmetric or in any other way have a predictable shape.

A leaf in a classification tree is similar to a class in an equivalence parti-
tioning: We only need to test one member, because they are all assumed to
behave in the same way.

4.1.6.1 Classification Tree Method Coverage
The coverage for a classification tree is the percentage of the total leaf classes
tested in a test suite.

Leaves belonging to different aspects can be combined, so that we can
reach a given coverage with fewer test cases. In areas of high risk we can also
choose to test combinations of leaf classes.

4.1.6.2 Classification Tree Method Test Design
Template
It is usually more practical to present a classification tree in a table rather than
as a tree. A template for such a table where the test conditions are captured,
is shown below.

Test design item number.: Traces:

Assumptions:

Domain 1 Aspect 1 Domain n Aspect n Tag Tc1 Ten

1814.1 Specification-Based Techniques

Book_samlet.indb 181 2/19/08 8:14:47 PM

The fields in the table are:
Test design item number: Unique identifier of the test design item
Traces: References to the requirement(s) or other descriptions covered
by this test design
Assumptions: Here any assumption must be documented.
Domain 1: A description of the (root) domain
Aspect 1: A list of the aspects defined for domain 1
For each aspect a list of subdomains are made.
For each of the subdomains new aspects are identified or the subdomain
is left as a leaf.
This goes on until we have reached the leaves in all branches.
Tag: Unique identification of the leaves = test conditions
Tc1: A marking of which test cases cover the test conditions

4.1.6.3 Classification Tree Method Example

In this example we are going to test the following requirements for a small
telephone book system:

(1) A person can have more than one phone number
(2) More than one person can have the same phone number
(3) There is one input field where you can type either:

 Phone number
 All names in the full name
 Some of the names in the full name

(4) A person shall be found if one or more names match
(5) One or more people shall be found if the phone number matches
(6) The output shall be either:

 An entry for each person that is found
 An error message: no person found

First we fill in the header:

The next thing is to look at the root and identify the first level of aspects:

Test design item number: 56 Traces: Req. (1) – (6)

Assumptions: None

Test Techniques182

Book_samlet.indb 182 2/19/08 8:14:47 PM

Now we must take each of these aspects one by one and filter the root
domain through them. The leaf subdomains are marked in bold.

We now have seven subdomains that are leaves, and three that can be
further broken down by new aspect. So we find some aspects for each of the
remaining subdomain, and find the subdomain for each.

The “old” leaves have been left out of the table for the time being, and the
“new” leaves are marked in bold.

Domain 1 Aspect 1

All inputs and types of lists

input type

match?

state of list

result

Domain 1 Aspect 1 Domain 2

All inputs and types of lists

input type pure text

pure number

mixture

empty

match? no

yes

state of list empty

not empty

result nothing found

something found

Domain 1 Aspect 1 Domain 2 Aspect 2 Domain 3

All inputs and types of lists

match? yes no.of matches 1

more than 1

type of match name

phone no.

state of list not empty 1 name + 1 no. yes

no

1834.1 Specification-Based Techniques

Book_samlet.indb 183 2/19/08 8:14:48 PM

Now we have only one subdomain, which is not a leaf left to deal with,
namely a match of the name. The aspect to use here is how much of the name
matches, and the subdomains are: “full name” and “part of name.” These are
leaves.

Before we go any further we have to control the partitioning. We need to
ensure that any member of a domain fits into one and only one subdomain.

In this example we find that a string of blanks belongs to more than
one subdomain, because a blank is considered to be text. To resolve that we
require that pure text contains at least one letter.

Our test conditions are now defined, and we must go on defining our test
data and test cases.

If we examine the classification tree we can see that we need a number of
phone lists as our test data.

Domain 1 Aspect 1 Domain 2 Aspect 2 Domain 3

All inputs and
types of lists

match? yes no.of matches 1

more than 1

type of match name

phone no.

state of
list

not empty 1 name + 1 no. yes

no

1 name + many no yes

no

many names + 1 no. yes

no

1 name + 1 no. yes

no

result something
found

1 name + many no. yes

no

many names + 1 no. yes

no

Test Techniques184

Book_samlet.indb 184 2/19/08 8:14:48 PM

Telephone list 1
 Bo Hansen 4311
 Neil Smith 4210 4545
 John Raven 4545

Telephone list 2
 Bo Hansen 4311
 Neil Smith 4210 4545

Telephone list 3
 Bo Hansen 4311
 John Raven 4545

Telephone list 4
 Neil Smith 4210 4545

Telephone list 5 is empty

All the test conditions identified in the classification tree can be covered
by eight test cases. We could trace the test cases to the test conditions, but
since some of the test cases cover quite a few test conditions we mark the test
cases that cover the conditions in the condition table here.

The test cases we can design are:

These tables tend to get rather big, and it is normally a good idea to handle
them in a spreadsheet. The full condition table is shown in Appendix 4A.

TC Input = Expected output

1 Telephone list 1
“Bo Hansen”

Bo Hansen 43–11

2 Telephone list 1 “4545” Neil Smith 4545
John Raven 4545

3 Telephone list 1 “John 2” No person found

4 Telephone list 1 “4210” Neil Smith 4210, 4545

5 Telephone list 2
“”

No person found

6 Telephone list 3 “Raven” John Raven 4545

7 Telephone list 4
“Bo Hansen”

No person found

8
Telephone list 5
“43”

No person found

1854.1 Specification-Based Techniques

Book_samlet.indb 185 2/19/08 8:14:49 PM

4.1.6.4 Classification Tree Method Hints
The classification tree method facilitates the test case design when it is too
complicated to make equivalence class partitioning.

This is mainly the case when input is composed of more parts, and the
relations between the input parts rather than the individual parts determine
the outcome.

The method is useful when input can be considered as a unit, for example
when the input is given via a graphical user interface. In such forms there are
no sequences in the input; the user determines the sequence and the input is
treated when the user decides that the form is filled in.

In other types of user interfaces, where the sequence of the input is pre-
determined, equivalence partitioning can be used on each individual input
item.

Remember that not only what is entered by the user is input. Lists, files,
database tables, and other types of data used by the system are also part of
the “input.”

4.1.7 Pairwise Testing
When we make test cases from a classification tree, the combinations of the
leafs we get in our test cases are often more or less selected at random. Fur-
thermore we often do not get all possible combinations tested. This may also
be the case when we are testing products with other types of possible combi-
nations of configurations (preconditions) or of inputs.

An example of a product with a number of precondition possibilities is a sys-
tem that may run:

 On three different browsers
 Using two different database administration systems
 On four different operating systems

This system has limited possibilities when you think about it, but even so
there are 3 x 2 x 4 = 24 different possible combinations to test.

Another example is a system with a form for entering different informa-
tion about clients, both actual and potential. The following information must
be supplied: the values in brackets after the information type are the possible
valid values to select from:

 Size (small, medium, large)
 Business (private, civil administration, defense)
 Relevance (low, middle, high)
 Status (customer, lead, potential)
Here we have 3 x 3 x 3 x 3 = 81 possible combinations.

Test Techniques186

Book_samlet.indb 186 2/19/08 8:14:49 PM

In some cases it may be possible and relevant to test all combinations of
preconditions and/or inputs. But in some cases it is not, and then we have to
have another way of designing sufficient test cases.

The pairwise test case design technique is about testing pairs of possible
combinations. This reduces the number of test cases compared to testing all
combinations, and experience shows that it is sufficiently effective in finding
defects in most cases.

It is not always an easy task to identify all the possible pairs we can make
from the combination possibilities. There are two different techniques to assist
us in that task, namely orthogonal arrays and the allpairs algorithm. There is
not objective evidence as to which technique is the best, but both techniques
have their fans and their opponents.

4.1.7.1 Pairwise Testing Coverage
It is possible to measure the coverage of all pairs. It is simply measured as the
percentage of the possible pairs that have been exercised by a test.

4.1.7.2 Orthogonal Arrays
Orthogonal arrays were first described by the Swiss mathematician Leonhard
Euler, born in 1707. He introduced much of the modern terminology for mathe-
matical analysis, including the notation for mathematical functions.

An orthogonal array is a two-dimensional array (a matrix) of values
ordered in such a way that all pairwise combinations of the values are present
in any two columns of the arrays.

Orthogonal arrays are said to be balanced, because the number of times
one possible pair is present, all the pairs will be present the same number of
times (in the simple example 1 time).

An orthogonal array is mixed if not all the columns have the same range
of values. We can have an orthogonal array where one column only has 1s and
2s and other columns have 1s, 2s, and 3s, for example.

The size and contents of orthogonal arrays are usually described in a
general manner like:

(N, s1k1 s2k2 ... , t)

An example of an orthogonal array is:

Select any two columns and all the possible
pairs of 1 and 2:
(1,1); (1,2); (2,1); and (2,2)
are present.

1 1 1

1 2 2

2 1 2

2 2 1

1874.1 Specification-Based Techniques

Book_samlet.indb 187 2/19/08 8:14:49 PM

where
N = number of rows (or runs)
s = number of levels = number of different values
k = number of factors = number of columns for the corresponding s
t = strength = in any t columns you see each of the st possibilities equally
 often (t is usually 2 and in that case often omitted from the description)
Note that the description is often ordered so that the s’s are ordered in

ascending order, though the actual columns in the array may be arranged
differently.

This notation is very helpful when we are looking for suitable orthogonal
arrays for our testing task.

The simple orthogonal array shown above can be described as: (4, 23)
An orthogonal array described as (72, 25 33 41 67) is a mixed array with

72 rows, 5 columns with 2 different values, 3 columns with 3 different values,
1 column with 4 different values, and 7 columns with 6 different values, that
is 16 columns in all.

Creating orthogonal arrays is not a simple task. Many people have
contributed to libraries of orthogonal arrays, and new ones are still being
created. A large number of arrays in all sizes and mixtures may be found on
www. research.att.com/~njas/oadir/index.html.

We can use orthogonal arrays to help us identify all the pairs of possible
inputs or preconditions that we want to test. What we need to do is find a
suitable array and substitute the values in this with our values. If we then
design test cases corresponding to each row, we are guaranteed to have tested
all the possible pairs.

The process is the following:

 Identify the inputs/preconditions (IPs) that can be combined
 For each of the IPs find and count the possible values it can have
 (e.g., (IP1;n=2); (IP2;n=4) and so on)
 Find out how many occurrences you have of each n, (e.g., 3 times n
 = 2, 1 times n= 4 and so on) (this provides you with the
 needed sets of sk (e.g., 23 41))
 Find an orthogonal array that has a description of at least what you
 need—if you cannot find a precise match, take a bigger array; this
 often happens, especially if we need a mixed array
 Substitute the possible values of each of the IPs with the values in
 the orthogonal array—if we had had to choose an array that was
 too big, we could just fill in the superfluous cells with valid values
 chosen at random
 Design test cases corresponding to each row in the orthogonal array

Test Techniques188

Book_samlet.indb 188 2/19/08 8:14:50 PM

Orthogonal Array Example

This example covers the system with the input possibilities and their corre-
sponding valid values shown here:

 Size (small, medium, large)
 Business (private, civil administration, defense)
 Relevance (low, middle, high)
 Status (customer, lead, potential)

There are four input possibilities, and each of them has three possibili-
ties, so we need at least an array of (34). One such array can be found on the
Internet, namely:

We will now assign the first column to size, and substitute the values in
the array with the possible values for size.

The array will look as shown below, where we have added an extra row to
show which column represents which input:

1 1 1 1

1 2 2 3

1 3 3 2

2 1 2 2

2 2 3 1

2 3 1 3

3 1 3 3

3 2 1 2

3 3 2 1

size 1 1 1

small 2 2 3

small 3 3 2

small 1 2 2

medium 1 2 2

medium 3 1 3

medium 3 1 3

large 1 3 3

large 2 1 2

large 3 2 1

1894.1 Specification-Based Techniques

Book_samlet.indb 189 2/19/08 8:14:50 PM

The fully substituted orthogonal array is shown below:

From this table we can design the nine low-level test cases needed to get
100% pair coverage by using the values given in each row as the input values
for our four fields.

We still have to derive the expected results from the requirements or other
basis material—as usual the test case design technique can not provide
those.

4.1.7.3 Allpairs Algorithm
James Bach has created: “a script which constructs a reasonably small set of
test cases that include all pairings of each value of each of a set of parameters.”
The script is called Allpairs and it is available from James Bach’s Web site at
www.satisfice.com.

The principle of finding the pairs is different from using orthogonal ar-
rays, but the aim is the same: to reduce the number of test cases to run when
testing combinations of a number of inputs/preconditions each with a num-
ber of valid values.

In the words of James Bach: “The Allpairs script does not produce an op-
timal solution, but it is good enough.” This is, of course, James Bach’s opinion
and experience, and it is not necessarily true in all contexts.

4.1.7.4 Higher-Order Combinations
The techniques described above are concerned with getting pairs of possible
values for test cases. We can also choose to test higher-order combinations,
such as triples or more, but that is rarely done.

size business relevance status

small private low customer

small civil
administration

middle potential

small defense high lead

medium private middle lead

medium civil
administration

high customer

medium defense low potential

large private high potential

large civil
administration

low lead

large defense middle customer

Test Techniques190

Book_samlet.indb 190 2/19/08 8:14:51 PM

4.1.7.5 Pairwise Testing Hints
When we create pairs of values as described earlier, all the values have equal
weight. This means that neither orthogonal arrays nor the Allpairs algorithm
takes the distribution of the values and the risks associated with individual
pairs into account.

It may well be, that one particular value is way more common than any
of the others—no doubt for example that there are much more private busi-
nesses than defense-related businesses around.

It may also be possible that a specific combination has a much larger risk
level than the others (i.e., that the effect if a defect is not found around that
combination, is much higher than for all other combinations), it could, for
example, be serious for our company if all defense/leads were left out of a
mailing list with invitations to a special sales event, whereas it would hardly
make any difference if small/privates were missed from a general mailing
campaign.

To overcome this we should supply pairwise testing with risk analysis and
design more test cases around the combinations with a high risk level.

In some cases the pairs we have established to test are not actually test-
able. One value of one input may be prohibitive for a specific value for another
input. In this case there is nothing else to do than leave that test case out and
explain why a lower coverage than expected was achieved.

4.1.8 Use Case Testing
The concept of use cases was first developed by the Swedish Ivar Jacobsen in
1992 and has since made triumphal progress in the IT development world.

A use case or scenario as it is also called shows how the product interacts
with one or more actors. It includes a number of actions performed by the
product as results of triggers from the actor(s). An actor may be a user or an-
other product with which the product in question has an interface.

Use cases are much used to express user requirements at an early state
in the development and they are therefore excellent as a basis for acceptance
testing (if they are kept up-to-date and still reflect the product as it has turned
out in the end!).

Use cases should be presented in a structured textual form with a number
of headings for which the relevant information must be supplied. There are
many ways of structuring a use case, and it is up to each organization to
define its own standard.

1914.1 Specification-Based Techniques

Book_samlet.indb 191 2/19/08 8:14:51 PM

The following example shows a set of headings for a use case with the
explanations of what to write under each.

Testing a use case involves testing the main flow as specified in the steps
in the description. Depending on the associated risks it may also include testing
the variants and exceptions.

Note that the description of the main flow is usually much shorter than
the descriptions of the variants and exceptions; these may also be considerably
more difficult to test, if at all possible.

As it can be seen in the template above a good use case provides a lot of
useful information for testing purposes. It should in fact be possible to design
our test procedures directly from the use case description.

We can get the identification of the use case for traceability purposes and

Use case: The name of the use case. The name should be
as descriptive as possible.

Purpose: The goal of the use case (i.e., what is achieved
when it is completed).

Actor: Who (in terms of a predefined role) is interacting
with the product.

Preconditions: Any prerequisite that must be fulfilled before the
use case may be performed.

Description: The following is a list of actions to be performed.
The list should have no more than 20 steps (n);
otherwise the use case should be divided.

Postconditions: The state in which the product and/or the
actor is to be found in when the use case
has been performed.

Variants and exceptions: Any specific cases in terms of variants or excep-
tions must be described here. This part often
constitutes the bulk of the use case.

Rules: Any specific rules or complex calculations are
described here, or references are made to, for
example, standards where such issues are detailed.

Safety: Any safety considerations are described here.

Frequency: How often the use case must be performed.

Critical conditions: Any conditions under which the performance of
the task is especially critical (e.g., in terms of
response time or volume).

Actor Product

1.

n.

Test Techniques192

Book_samlet.indb 192 2/19/08 8:14:51 PM

the necessary preconditions directly from the form. The high-level test cases
can be extracted directly from the steps in the description, where it should be
ensured that each step provides the preconditions for the next one, except for
the last which provides the expected postconditions.

A use case description will rarely contain actual input values; these must
be selected when we design our low-level test cases. Appropriate specification-
based techniques (for example, equivalence partitioning, boundary value
analysis, and pairwise testing) may be used to select the actual values to use.

Based on the description, the postconditions, and possibly the rules it
should be possible to derive expected results for each test case.

The information given for variants and exceptions, safety, frequency, and
critical conditions can be used for risk analysis and decisions about which
variants and exceptions to test to which depths.

4.1.8.1 Use Case Testing Coverage
Since a use case is not something easily measurable, there is no coverage item
defined for use case testing, and it is therefore not possible to determine the
coverage.

4.1.9 Syntax Testing
Note: This technique is not part of the ISTQB syllabus, but included here because I find
it is very useful.

Syntax is a set of rules, each defining the possible ways of producing a
string in terms of sequences of, iterations of, or selections among other strings.

Syntax is defined for input to eliminate “garbage in.”
Many of the “strings” we are surrounded by in daily life are guided by

syntax.

For example

 Web addresses: www.aaaaa.aa, aaaaa.aa
 (note the difference in appearances! My word processer recognizes
 the first address, but not the second address, because the www is
 missing)

 CPR number: ddmmyy-nnnn
 (Danish Central Person Registration number)

 Credit card number: nnnn nnnn nnnn nnnn
 (my VISA card—other cards have other syntaxes)

In the examples above the rules for the different strings are expressed
using for example “n” to mean that a number should be at a specific place in
the string or “dd” to indicate a day number in a month.

1934.1 Specification-Based Techniques

Book_samlet.indb 193 2/19/08 8:14:52 PM

We can set up a list of rules, defining strings as building blocks and defin-
ing a notation to express the rules applied to the building blocks in a precise
and compressed way. The building blocks are usually called the elements of
the entire string.

The syntax rule for the string we are defining must be given a name.
The most commonly used notation form is the Backus-Naur form. This

form defines the following notations
“” elementary part, e.g “1” “-”
| alternative separator “A” |“B”
[] optional item(s) [“ ”]
{} iterated item
These notations can be used to form elements and the entire sting.

An example of a syntax rule for a string called pno. could be:
pno. = 2d [“ ”] 2d [“ ”] 2d [“ ”] 2d
Here we have defined the elements:
2d = dig dig
dig = “0” |“1” |“2” |“3” |“4” |“5” |“6” |“7” |“8” |“9”
The means that the pno. string must consist of four sets of two digits. The

digits can range from 0 to 9. The sets of two digits can be separated by blanks,
but they can also not be separated.

A valid string following this syntax is a Danish telephone number:
39 62 36 48.

The way my father used to write his telephone number is, however, illegal
according to this syntax: 45 940 941.

To derive test conditions we need to identify options in the syntax and test
these independently. Options appear when we can choose between elementary
parts or elements for a given element or for the entire string. Syntax testing
does not include combinations of options as part of the technique.

There is no coverage measure for syntax testing.
To make a negative test we need to test invalid syntax as well. For this we

operate with possible mutations. Examples of the most common mutations
are:

 Invalid value is used for an element
 One element is substituted with another defined element
 A defined element is left out
 An extra element is added

Test Techniques194

Book_samlet.indb 194 2/19/08 8:14:52 PM

4.1.9.1 Syntax Testing Templates
The design of the test conditions based on syntax can be captured in a table
like the one shown here The fields are the standard fields in test condition
templates, as described earlier.

4.1.9.2 Syntax Testing Example

In this example we will test the input of a member number. The syntax
defined for the member number is

member no. = type” “no” “mm”-”yy
First we list the options derived from the entire string, the elements, and

the elementary parts.
 options

member no. = type” “no” “mm“-”yy none
type = “B” |“S” |“G” 3
no = dig dig dig none
mm = “01” |“02” |….. |“11” |“12” 12
yy = dig dig none
dig = “0” |“1” |“2” |… |“8” |“9” 10
 25

We have 25 possible independent mutations. We can list them in the
template like this.

Since we have not included specifications of what is happening when a
string with a valid syntax is entered (nor what happens if the string is invalid)
we will only list the inputs for the test cases we can design from the test
conditions.

Test design item number: Traces:

Based on: Input / Output Assumptions:

Tag Description

Tag Description

T1 “B” | “S” | “G”

M1 “01” | “02” | ….. | “11” | “12”

D1 “0” | “1” | “2” | … | “8” | “9”

1954.1 Specification-Based Techniques

Book_samlet.indb 195 2/19/08 8:14:52 PM

The following table shows a few of the 25 possible test cases.

The number of test cases may be reduced by having a single test case cover
several options. This may, however, reduce the fault correction time, if failures
are encountered, because it can be more difficult to locate the fault.

 To test invalid syntax we list the mutations we want to try. These are:

TC Tag Input

TC1 T1 B 326 04-05

TC2 T1 S 326 04-05

TC4 M1 G 326 01-05

TC5 M1 G 326 02-05

TC6 M1 G 326 03-05

TC15 M1 G 326 12-05

TC16 M1 G 111 01-11

TC17 M1 G 222 01-22

TC24 M1 G 999 01-99

TC25 M1 G 000 01-00

Tag Mutation description

MU1 Invalid value – Applicable to all positions in the string

MU2 Substitute – Any two elements

MU3 Element missing – Applicable to all elements

MU4 Extra element – Anything, but may not be possible

Test Techniques196

Book_samlet.indb 196 2/19/08 8:14:53 PM

There is an infinite number of possible test cases for the mutations.
We will only list a few here:

4.1.9.3 Syntax Testing Hints
The number of invalid strings to test depends on the risk related to invalid
input wrongly being accepted.

It can be a bit tricky to work with mutations, because some may be in-
distinguishable from correctly formed inputs if elements are identical. Some
mutations may also be indistinguishable from each other, in which case they
should be treated as one.

It is possible to define more mutations than those listed above, depending
on the nature of the syntax.

To get an even stricter test we can use combinations of mutations. Who
knows? Maybe two wrong elements at a time will cause the string to be
accepted.

4.2 Structure-Based Techniques
The structural test case design techniques are used to design test cases based
on an analysis of the internal structure of the component or system. These
techniques are also known as white-box tests.

Traditionally the internal structure has been interpreted as the structure
of the code. These techniques therefore focus on the testing of code and they
are primarily used for component testing and low-level integration testing. In
newer testing literature, structural testing is also applied to architecture where
the structure may be a call tree, a menu structure, or a Webpage structure.

TC Tag Input

TC1 MU1 F 456 02-99

TC2 MU1 B-326 02-99

TC3 MU1 B a26 02-99

TC4 MU1 B-326 02-9g

TC12 MU2 BB456 02-99

TC15 MU2 B B 02-99

TC33 MU3 B 02-99

TC34 MU3 B 456-99

TC62 MU4 BB 456 02-99

if condition then
Statement 1

else
Statement 2

1974.2 Structure-Based Techniques

Book_samlet.indb 197 2/19/08 8:14:54 PM

The structural test case design techniques covered here are:

 Statement testing
 Decision testing/branch testing
 Condition testing
 Multiple condition testing
 Condition determination testing
 LCSAJ (loop testing)
 Path testing
 (Interunit testing—not part of the ISTQB syllabus)

The test case design techniques in this category all require that the tester
understands the structure (i.e., has some knowledge of the coding language).
The tester doesn’t necessarily need to be able to write code. It is like with a
foreign language: You may be able to understand what is being said, but find
it difficult to express yourself. This is usually not a problem anyway, because
most structural testing of code is performed by programmers.

Structural testing is very often supported by tools, because the execution
of components in isolation requires the use of stubs and drivers.

The test coverage can be measured for the structural test techniques. Test
cases are designed to get the required coverage for the specified coverage item.
If the coverage is expressed as statement coverage for example, the input to
the test cases is determined using the statement test case design technique.

It is generally a good idea to start any test with specification-based, de-
fect-based, and experience-based testing and measure the coverage achieved
by executing tests designed with these techniques. This is cheaper and easier
than to start off with structure-based techniques. Only if the achieved cover-
age is too low, should the appropriate structure-based technique be brought
into action.

The techniques provide us with ideas for input. For the low-level test cases
the concrete input values are selected. Subsequently the expected output is
determined.

From where do we derive the expected output?
From the requirements—NEVER, ever from the code!

4.2.1 White-Box Concepts
Before we go any further there are some white-box concepts that need to be
defined. They are illustrated in the “white-box inset” shown on the opposite
page.

Test Techniques198

Book_samlet.indb 198 2/19/08 8:14:54 PM

The first concept is that of a statement. An executable statement is defined
as a noncomment or nonwhite space entity in a programming language, typically
the smallest indivisible unit of execution.

A group of statements always executed together—or not at all—is called
a basic block. A basic block can consist of only one statement or it can consist
of many. There is no theoretical upper limit for the number of statements in
a basic block.

The last statement in a basic block will always be a statement that leads to
another building block, or stops the execution of the component we are work-
ing with (e.g., return) or the entire software system (end).

The most interesting is, however, when a basic block ends in a decision,
that is a statement where the further flow depends on the outcome of the de-
cision. Decision statements are for example IF … THEN …ELSE, FOR …, DO
WHILE…, and CASE OF….

A decision statement is also called a branch point. A branch is a (virtual)
connection between basic blocks. One or more branches will lead into a basic
block (except to the first), and likewise there will be one or more branches
leading out of a basic block (except the last).

The braches out of a basic block are connected to the outcomes of the deci-
sion, also called decision outcome or branch outcome. Most decisions have two
outcomes (True or False), but some have more, for example Case statements.

The last concept is that of a condition. A condition is a logical expression
that can be evaluated to either True or False. A decision may consist of one
simple condition, or a number of combined conditions.

4.2.2 Statement Testing
Statement testing is a test case design technique in which test cases are
designed to execute statements.

A statement is executed in its entirety or not at all.

1994.2 Structure-Based Techniques

Book_samlet.indb 199 2/19/08 8:14:55 PM

b = 3 + a; is one statement, whereas
if a = 2 then b = 3 + a end if; is more than one statement!
The definition of a statement is independent of how the code is actually

written and what language it is written in.
In statement testing we design test cases to get a specifically required

statement coverage. Statement coverage is the percentage of executable state-
ments (in a component) that have been exercised by the test. Statement cov-
erage is the weakest completion criterion we can have.

The component under test must be decomposed into the constituent state-
ments, and we derive input for test cases from the code.

In the first example we have this small piece of code:

There are five statements (since “endif” doesn’t count).
To get 100% statement coverage we need one test case:

Note that we have no means of finding out what the expected output is,
because the corresponding requirements (or design) are not included.

In the next example we will use this piece of code:

Here we have eight statements. To get 100% statement coverage we need
two test cases:

Read A;
Read B;
if A = 245 then
 Write ’Bingo’;
endif;

Write B;

Read A;
Read B;
if A = 245 then
 Write ’Bingo’;
endif;
if A < B then
 A = B;
else
 A = 0;
endif;

TC Input Expected output

TC1 A = 245

Test Techniques200

Book_samlet.indb 200 2/19/08 8:14:55 PM

Again, we don’t know what the expected results may be.

4.2.3 Decision/Branch Testing
Decision and branch testing have coexisted for many years. Experience has
shown that it may be quite difficult to define branches correctly, whereas
decisions and decision outcomes are much easier to define.

At 100% coverage branch coverage and decision coverage give identical
results.

We can also see that decision outcome is defined to be equal to branch
outcome, namely (according to BS7925-1): The result of a decision (which
therefore determines the control flow alternative taken).

To define test cases for decision testing we have to:

 Divide the code into basic blocks,
 Identify the decisions (and hence the decision outcomes and the
 branches)
 Design test cases to cover the decision outcomes or branches

In most cases a decision has two outcomes (True or False), but it is possible
for a decision to have more outcomes, for example, in “case of ...” statements.

TC Input Expected output

TC1 A = 245, B = 250

TC2 A = 400, B = 250

2014.2 Structure-Based Techniques

Book_samlet.indb 201 2/19/08 8:14:55 PM

Let us look at the write “Bingo” example again. The flow diagram correspond-
ing to the code is shown here. We can see that this code has seven branches
and four decision outcomes.

First we set A = 240 and B = 120.
This input covers three branches and we get branch coverage = 3/7 =

43%. It also covers four decision outcomes, and we get a decision outcome
coverage of 2/4 = 50%.

Next we set A = 245 and B = 360.
This covers four more branches and two more decision outcomes, and we

have now got 100% branch coverage and 100% decision outcome coverage.

It (often) requires more test cases to obtain 100% branch and decision
outcome coverage than to obtain 100% statement coverage.

Decision coverage is usually measured using a software tool. Some tools
can show the code and mark covered and uncovered decision outcomes by
coloration of the code lines.

4.2.3.1 Other Decisions
Decisions may also be achieved by other statements than those using Boolean
conditions, for example “case,” “switch,” or “computed goto” statements, or
counting loops (implemented by “for” or “do” loops).

These should not go by untested. We have two options available for de-
signing test cases for these, namely:

 Assume that the decision is actually implemented as an equivalent
 set of Boolean conditions
 Use a condition testing test case design technique as a supplement
 to decision testing

4.2.4 Condition Testing
A condition is a Boolean expression containing no Boolean operators, such as
AND or OR. A condition is something that can be evaluated to be either TRUE
or FALSE, like: “a < c.”

A statement like “X OR Y” is not a condition, because OR is a Boolean
operator and X and Y Boolean operands. X and Y may in themselves be condi-
tions.

Conditions are found in decision statements.

A=B

write ’Bingo’

A < B

Read A

Read B

A = 245

yes

no

yes

no

A=0

write A

Test Techniques202

Book_samlet.indb 202 2/19/08 8:14:56 PM

Decision statements may have one condition like:
if (a < c) then …
They may also be composed of more conditions combined by Boolean op-

erands, like:
if ((a=5) or ((c>d) and (c<f))) then …
or for short: if (X or (Y and Z)) then …

The condition outcome is the evaluation of a condition to be either TRUE
or FALSE. In condition testing we test condition outcomes.

The condition coverage is the percentage of condition outcomes in every
decision (in a component) that have been exercised by the test.

So to get 100% condition outcome coverage we need to get each condition
to be True and False (i.e., two test cases).

In the first example with (a<c) we can design the test cases:

In the next, more complex, example with (X or (Y and Z)) we also need to
get each of the condition to be True and False.

Without going into detail about how to get X, Y, and Z to become True and
False we can see, that we can still get 100% condition coverage with 2 test
cases, namely for example:

A 100% condition coverage for a decision can usually be covered with two
test cases regardless of the complexity of the decision statement.

The 100% condition coverage may even be achieved without getting a
100% decision outcome if the entire decision evaluates to the same for both
cases! Condition testing may therefore be weaker than decision testing.

Condition testing and the condition coverage test measurement are
vulnerable to Boolean expressions, which actually control decisions, being
placed outside of the actual decision statement.

Test case a c Outcome

1 5 7 True

2 6 2 False

Test case X Y Z

1 True True True

2 False False False

2034.2 Structure-Based Techniques

Book_samlet.indb 203 2/19/08 8:14:56 PM

Consider this example:

FLAG := A or (B and C);
if FLAG then
 do_something;
else
 do_something_else;
end if;

It may look as if we get 100% condition coverage by getting FLAG to eval-
uate to True and False, but in reality we need all of A, B, and C to evaluate to
True and False.

To combat this we should design test cases for all Boolean expressions, not
just those used directly in control flow decisions.

4.2.5 Multiple Condition Testing
With this test technique we test combinations of condition outcomes. To get
100% multiple combination coverage we must test all combinations of out-
comes of all conditions.

Because there are two possible outcomes for each condition (True and
False) it requires 2n test cases, where n is the number of conditions, to get
100% coverage.

If we take the example from above:

if (X or (Y and Z)) then ..
we have three conditions. We therefore need 23 = 8 test cases to get 100%
multiple condition coverage.

The test cases we need are:

Test case X Y Z

1 True True True

2 False True True

3 False False True

4 False False False

5 False True False

6 True False False

7 True True False

8 True False True

Test Techniques204

Book_samlet.indb 204 2/19/08 8:14:57 PM

The number of test cases grows exponentially with the number of conditions!
This is a very thorough test, even though it may happen that some of the test
cases are impossible to execute.

Sometimes the concept of “optimized expressions” jeopardizes the mea-
surement of this test technique. Optimized expressions mean that a com-
piler short-circuits the evaluation of Boolean operators. In for example the
programming language C the Boolean “AND” is always short-circuited: the
second operand will not be evaluated when the outcome can be determined
from the first operand.

Short circuits present no obstacle to branch condition coverage or condition
determination coverage, but there may be situations where it is not possible
to verify multiple condition coverage.

4.2.6 Condition Determination Testing
Sometimes testing to 100% multiple condition coverage would be to go over-
board in relation to the risk associated with the component.

In these cases we can use the condition determination testing technique.
With this technique we should design test cases to execute branch condition
outcomes that independently affect a decision outcome. This is a pragmatic
compromise where we discard the conditions that do not affect the outcome.

The number of test cases needed to achieve 100% condition determina-
tion coverage depends on how the conditions are combined in the decision
statements:

 As a minimum we need n+1 test cases
 As a maximum we need 2n test cases

where n is the number of conditions.

Still working with the same example as before:
if (X or (Y and Z)) then ..

we need the test cases listed in this table.

A “-” means that we don’t care about what the outcome is, because it does
not have impact on the result.

We can hence get 100% modified condition decision coverage or condition
determination coverage with just four test cases.

Test case X Y Z

1 True - -

2 False True True

3 False False -

4 False True False

2054.2 Structure-Based Techniquess

Book_samlet.indb 205 2/19/08 8:14:57 PM

4.2.7 LCSAJ (Loop Testing)
Sometimes a program needs to do the same thing a number of times with
different values. Instead of having to repeat the same piece of code several
times, coding languages allow loops, that is repetitive execution of the same
statements with different values for the variables.

The exact decision statements that form loops depend on the coding lan-
guage. The statements in a loop are called the loop body. For some types of
loops the loop body will always be executed at least once; for others it may be
skipped altogether depending on the conditions of the looping.

.

LCSAJ testing is a test case design technique where loops are identified
and test cases developed to test linear sequences of code that start at a specific
point in the code and end with a jump (or at the end of the component). Such
a sequence is called a LCSAJ (Linear Code Sequence And Jump). It may also
be called a DD-Path (Decision-to-Decision Paths).

An LSCAJ is defined by

 The start of the linear sequence of executable statements
 The end of the linear sequence
 The target line to which the control flow is transferred at the end
 of the linear sequence

The three items in an LSCAJ are usually identified by their line numbers
in the source code listing.

An LCSAJ starts either from the start of a component or from a point to
which control flow may jump from other than the preceding line. An LCSAJ
terminates either by a specific control flow jump or by the end of the compo-
nent. LCSAJs may go forwards in the code, or they may go backwards if the
start point is somewhere down the code and the end point at a higher point.

LCSAJ coverage is the percentage of LCSAJs in a component that are
exercised by the test.

This little bit of code shows a so-called
while loop.
The loop is executed as long as the
value of A is less than or equal to 245,
and for each loop the value of both A
and B will be augmented by 1.

Read A;
B = 0;
while A <= 245 do
 B = B + 1;
 A = A + 1;
end while;
Write A;
Write B;

Test Techniques206

Book_samlet.indb 206 2/19/08 8:14:58 PM

To design the test cases using this technique we must:

 Identify each code line by its number
 List the branches (maybe with a note of the necessary conditions
 to satisfy them)
 From this list, find the LCSAJ start points
 Derive the LCSAJ from each of the start points

For each LCSAJ and thereby possible test case we therefore identify the
start line, the end line, and the target line for the jump.

Sometimes some reformatting of the code may be needed if the coding
standard used does not support this technique. The basic formatting rule that
must be observed is that each branch has to leave from the end of a line and
arrive at the start of a line.

This LCSAJ example is taken from BS-7925. We will base it on the
component shown here.

1. READ (Num);
2. WHILE NOT End of File DO
3. Prime := TRUE;
4. FOR Factor := 2 TO Num DIV 2 DO
5. IF Num - (Num DIV Factor)*Factor = 0 THEN
6. WRITE (Factor, ’ is a factor of’, Num);
7. Prime := FALSE;
8. ENDIF;
9. ENDFOR;
10. IF Prime = TRUE THEN
11. WRITE (Num, ’ is prime’);
12. ENDIF;
13. READ (Num);
14. ENDWHILE;
15. WRITE (’End of prime number program’);

The code lines have been defined by line numbers. The next step is to list
the branches.

From
BS–7925

2074.2 Structure-Based Techniques

Book_samlet.indb 207 2/19/08 8:14:58 PM

The start points we can identify are the lines: 1, 2, 5, 9, 10, 13, and 15.
The start points are sorted here; not listed in the order they are found in the
table.

We must now derive the LCSAJs from each of the start points. With start
point in line 1, we get the following LCSAJs:

(1, 2, 15) (1, 4, 10) (1, 5, 9) (1, 9, 5) (1, 10, 13) (1,14, 2)
We will have to work our way through the list of starting points finding

all the LCSAJs. The last one is (15, 15, exit).

When we design test cases to execute we must cover enough LCSAJs to
get the coverage we want. It will almost always be so that each test case covers
a number of LCSAJs.

It can also happen that some LCSAJs are impossible to execute. This must
be handled when defining the completion criteria based on LCSAJ coverage.

There are a number of classic pitfalls connected with loops. One defect to
watch out for in loops is the creation of an infinite loop, that is the case where
a defect causes the loop to (theoretically) continue looping for ever. Examine
the loop shown above and imagine what would happen if the statement “A =
A + 1;” was omitted in the loop. This would be evident in such a small piece
of code, but loops may be quite long and complicated, and infinite loops are
seen now and again.

Another issue is the sequence of the statements in the loop body. There
is almost always an issue about doing something the first time around and/
or the last time around in a loop. Again consider the example above: Will the
result be the same if B is set to 1 before the loop is started? And what if the
condition is “<” instead of “<=”?

Branch Type Condition

(2 -> 3) Requires not end of file

(2 -> 15) : Jump Requires end of file

(4 -> 5) Requires the loop to execute

(4 -> 10) : Jump Requires the loop to be a zero-trip

(5 -> 6) Requires the if in line 5 to be true

(5 -> 9) : Jump Requires the if in line 5 to be false

(9 -> 5) : Jump Requires a further iteration of the for loop

(9 -> 10) Requires the for loop to have exhausted

(10 ->11) Requires prime to be true

(10 -> 13) : Jump Requires prime to be false

(14 -> 2) : Jump Always has to take place

Test Techniques208

Book_samlet.indb 208 2/19/08 8:14:58 PM

4.2.8 Path Testing
A path is a sequence of executable statements in a component from an entry
point to an exit point.

Path coverage is the percentage of paths in a component exercised by the
test cases.

When you execute test cases based on any of the other structure-based
techniques described above, you will inevitably execute paths through the
code.

This example shows the six possible paths from beginning to end through
the tiny bit of code.

The number of possible paths through a component is exponentially
linked to the number of decisions, especially decisions involving loops.

The control flow diagram shown here for a bit of code includes a loop that
may be exercised up to 20 times. Such a loop only gives

20 + 19 + … + 1 possible different paths through the code.

In practice it may easily become impossible to obtain 100% path coverage
when loops are involved.

A=B

write ʼBingoʼ

A < B

Read A

Read B
A = 245

Yes

No

Yes

No

A=0

write A

04-22.pdf 29-10-2007 12:46:26

This example shows the six pos-
sible paths from beginning to
end through the tiny bit of code.

20

04-23.pdf 29-10-2007 12:55:03

2094.2 Structure-Based Techniques

Book_samlet.indb 209 2/19/08 8:14:59 PM

Path testing includes a bit of error guessing. Experience shows that it can
be useful to test these types of paths:

 Minimum path
 Path with no execution of any loop(s)
 Minimum path + one loop once
 Path with one loop a number of times
 Path with one loop the maximum number of times

where possible.

4.2.9 Intercomponent Testing
Note: This technique is not part of the ISTQB syllabus, but included here because I find it
is very useful—especially since integration testing often is overseen and difficult to come
to grips with.

The idea in structured design, object-oriented design, and most other
design paradigms is that the functionality is distributed on a number of com-
ponents and/or systems for ease of production and maintenance.

This means that interfaces exist between interacting components and sys-
tems. At the component level we say that components call functions in each
other, or, as it is expressed in object-oriented design, use methods that oth-
er classes make available. At the system level other types of interfaces exist,
such as software-to-hardware integration, software-to-network integration,
or software-to-manual procedure integration.

In the following the concept of function calls will be used, but the idea is
exactly the same for method usage, and system interfaces.

The intercomponent testing technique is used in integration testing where
the test objects are these interfaces. The integration comes after the component
or system testing and assumes that logical and other types of defects in the
body of the component or system have already been found.

The intercomponent testing is based on the design of the interfaces. For
each function we should be able to find a design description of:

 Input: The input parameters required by the function
 Functionality (which we are not interested in at this point)
 Output: The resulting output parameters produced by the function

What we need to test are the calls to the functions, that is the interfaces.
The coverage element is calls, and the intercomponent coverage is the per-
centage of the total number of calls that we have covered in a specific integra-
tion test.

Test Techniques210

Book_samlet.indb 210 2/19/08 8:14:59 PM

To identify the total number of calls made by all the components or systems
being integrated, we have to count, from the design, how many times each
function is called. This is called fan-in: number of calls of a specific function
from other functions (or the main program). This may be calculated using a
static analysis tool; see Section 9.3.4. The sum of all the fan-ins provides the
total number of calls.

For software components it is very difficult to say anything in general
about the values for fan-ins. In system integration we normally have a very
low fan-in, often only one, for each system.

Test cases are designed to cover the calls.
We may combine the intercomponent testing with other techniques to get

a more thorough coverage of the input and/or output parameters, for example
equivalence partitioning and boundary value analysis for constraints on the
parameters.

4.3 Defect-Based Techniques
In defect-based testing we are looking at the types of defects we might find in
the product under testing. The techniques are therefore starting from previous
experience, rather than the expected functionality or the structure of the test
product.

The techniques may therefore be less systematic than the previously
discussed techniques, since it is usually not possible to make exhaustive
collections of expected defects. The determination of defect-related cover-
age is hence also less comprehensive: Since there is no absolute amount of
expected defects, only what we have chosen or selected as expected defects,
the coverage is relative to that number.

The defect-based techniques covered here are:

 Taxonomies
 (Fault injection and mutation—not part of the ISTQB syllabus)

4.3.1 Taxonomies
A taxonomy is an ordered hierarchy of names for something. In this context
it is an ordered hierarchy of possible defect types.

Such a taxonomy is a sort of checklist over defects to look for, and it is
used to design test cases aimed at finding out if these defects are present in
the product under testing.

Many people have worked on defect taxonomies, starting with Beizer’s
bug taxonomy defined in the late 1980s. This taxonomy is quite comprehen-
sive and lists possible defects in a four-level hierarchy with identification
numbers. The first two levels are:

2114.3 Defect-Based Techniques

Book_samlet.indb 211 2/19/08 8:15:00 PM

1 Requirements
 11 Requirements incorrect
 12 Requirements logic
 13 Requirements, completeness
 14 Verifiability
 15 Presentation, documentation
 16 Requirements changes
2 Features and Functionality
 21 Feature/function correctness
 22 Feature completeness
 23 Functional case completeness
 24 Domain bugs
 25 User messages and diagnostics
 26 Exception conditions mishandled
3 Structural Bugs
 31 Control flow and sequencing
 32 Processing
4 Data
 41 Data definition and structure
 42 Data access and handling
5 Implementation and Coding
 51 Coding and typographical
 52 Style and standards violation
 53 Documentation
6 Integration
 61 Internal interfaces
 62 External interfaces, timing, throughput
7 System and Software Architecture
 71 O/S call and use
 72 Software architecture
 73 Recovery and accountability
 74 Performance
 75 Incorrect diagnostics, exceptions
 76 Partitions, overlay
 77 Sysgen, environment
8 Test Definition and Execution
 81 Test design bugs
 82 Test execution bugs
 83 Test documentation
 84 Test case completeness

Test Techniques212

Book_samlet.indb 212 2/19/08 8:15:00 PM

This taxonomy covers the entire development life cycle and may also be
useful as a checklist for early static test, for example of requirements and de-
sign, as well as for static tests of the tests, specification.

Another defect taxonomy is given in IEEE 1044 in the categorization for
incidents to be provided during the investigation phase of an incidents life cycle.
IEEE 1044 is discussed in detail in Chapter 7. This taxonomy has up to three
levels, of which only the first is provided here with the corresponding codes:

IV310 Logical problem
IV320 Computation problem
IV330 Interface/timing problem
IV340 Data-handling problem
IV350 Data problem
IV360 Documentation problem
IV380 Document quality problem
IV390 Enhancement
IV398 Failure caused by fix
IV399 Performance problem
IV400 Interoperability
IV401 Standards conformance
IV402 Other problem

Taxonomy testing is not a terribly effective test technique, especially not
if the taxonomy used is a standard one, not taking the nature of the specific
development process and product into account.

The taxonomies shown here, and others to be found in the testing literature
are, however, very useful as starting points for making your own taxonomy or
checklist of possible defects.

The coverage element for taxonomy testing is the listed defects and the
coverage is calculated as the percentage of these used for designing test cases.

4.3.2 Fault Injection and Mutation
Note: This technique is not part of the ISTQB syllabus, but included here because I some-
times find it useful.

Fault (or defect) injection and mutation are a type of technique where the
product under test is changed in controlled ways and then tested. This tech-
nique type is used to assess the effectiveness of the prepared test cases, rather
than actually looking for defects.

Fault injection is also known as fault seeding or bebugging. In this tech-
nique defects are deliberately inserted into the source code, either by hand or
by the use of tools.

2134.3 Defect-Based Techniques

Book_samlet.indb 213 2/19/08 8:15:00 PM

The defects inserted may be inspired by a checklist or a defect taxonomy.
The product is then tested, and it is determined how many of the injected
defects are found and how many other defects are found. These numbers are
used to estimate how many real defects are still left in the product.

In a set of components 50 defects are injected prior to component testing. The
component testing reveals

Injected defects: 26 and New defects: 83
Based on this it is estimated that there remain 77 defects in the compo-

nents and more tests should be designed, if this is not acceptable.

In mutation testing so-called one-token defects, such as “<” replaced with
“<=,” are made in the components. For each of these defects a new version of
the affected components is created and tested to see if the prepared test cases
reveal the defects. If they don’t they will have to be examined and corrected to
find the planted defects—and one hopes, more real defects as well.

The coverage element for this type of testing technique is the injected de-
fects and the coverage is calculated as the percentage of these found.

The drawback of the fault injection and mutation technique type is that
the inserted defects are not necessarily realistic. It can also be a fairly big task
to define and inject defects compared to the results to be gained.

It must also be noted that even though the technique type helps us identify
more defects of the inserted types, there is a number of defects where it is of
no use, for example, defects caused by omissions in the code or misunder-
standings of the requirements.

Fault injection may also be applied to data, in the sense that data may be
edited to be wrong compared to the expected data.

It is absolutely essential when using fault injection and mutation that a
good configuration management system is in place. It must be clear what the
“correct” code is and what code has been deliberately changed.

4.4 Experience-Based Testing Techniques
Faults are sly!

No matter how well we use the test case design techniques we cannot
catch all the faults. There are many reasons for this.

One is that not all failures occur every time the same action is performed.
Sometimes a failure only occurs when we have performed the same action
several times.

I use home banking when I pay my bills. I enter the details for a bill, hit “OK,”
and then the details are presented in a form for my endorsement, and I can go
on to the next bill. But, if I have more than eight bills to be paid at the same
time, a failure occurs. For the ninth bill the endorsement form is blank! I en-
dorse anyway, however, because the endorsement itself still works.

Test Techniques214

Book_samlet.indb 214 2/19/08 8:15:01 PM

Another reason why we can miss faults is something called coincidental
correctness. We may happen to choose an input, for example, when choosing
an input in an equivalence partition that does not reveal a fault.

An illustration of this is a test of the formula “nn” (n to the power of n).
Unfortunately the programmer has misunderstood the formula and imple-
mented it as “n+n.” If we happen to choose the input value of 2, the expected
result is 4 (2 x 2 = 4)—but alas, 2 +2 also equals 4.

We also need to be aware that identical functionality may or may not
be implemented identically. Many are the systems where, for example, date
handling has been implemented by different implementations groups for
different subsystems.

Furthermore, rare or fringe situations may be overlooked or deliberately
left out in the specification of the structured test cases.

The sum of all this is that systematic testing is not enough! Since faults
are sly we have to attack them in unpredictable ways.

This is where the nonsystematic testing techniques come in as a valuable
supplement to systematic testing techniques. The nonsystematic techniques
to be discussed here are:

 Errorguessing
 Checklist-based
 Exploratory testing
 Attacks

These techniques may be used before the systematic techniques to assess
test readiness by uncovering “weak” areas. This can also be used as the input
to initial risk analysis. The techniques may also be used after the systematic
testing as a final “mopping-up,” hopefully providing extra confidence.

Nonsystematic testing techniques must NEVER be the only technique to
be used.

4.4.1 Error Guessing
Error guessing is a test technique where the experience of the tester is used to
anticipate what faults might be present in the test object as a result of errors
made, and to design tests specifically to expose them.

This means that the tester uses his or her experience gained from the struc-
tured tests that have already been executed or from other test assignments to
guess where faults may remain in the test object.

The tester has to think creatively—out of the box, over the borders, around the
corners—both in relation to how the structured tests have been structured, how
the test object has been produced, and the nature of the faults already found.

2154.4 Experience-Based Testing Techniques

Book_samlet.indb 215 2/19/08 8:15:01 PM

In relation to the testing approach we could try to find alternative approaches,
and ask ourselves:

 How could this be done differently?
 What would it be completely unlikely to do?
 What assumptions may the testers, who performed the structured
 tests, have made?

In relation to how the test object has been produced, we could ask
ourselves:

 What assumptions may the analysts or the programmers have
 made?

 What happens if I use a value of 0 (both input and output)?
 What about cases of “none” and “one” in lists?
 What happens if I go over the limit?
 Are there any cases of “coincidence,” for example, same value twice
 or same value for all?

The faults we have already found can be exploited to spur new ideas. We
can for example ask ourselves:

 Are there other faults like this?
 Are there any reverse faults?
 Are there any perpendicular faults?

All these questions and many more can be assembled and maintained in
checklists.

The coverage for error-guessing testing is related to the tester’s experience
base and not easily documented.

4.4.2 Checklist-Based
Checklists can hold lists of possible faults that are known to escape the sys-
tematic test. They are formed and maintained by experience—lessons learned
from previous projects; and they are a valuable asset in an organization.
Checklists may be used for designing both static and dynamic tests, and they
can be used as a good starting point for for example risk identification or error
guessing brain storms.

Special checklists may be defect taxonomies or rules derived from stan-
dards, for example, an internal standard for user interfaces.

Coverage for checklist-based testing is related to the contents of the check-
lists used. The coverage for a specific test may be calculated as the percentage
of the items in the list(s) covered by the test.

An example of a checklist is the list shown below for CRUD testing. The

Test Techniques216

Book_samlet.indb 216 2/19/08 8:15:01 PM

abbreviation CRUD refers to the life cycle of data entities in a product, namely:

 Create
 Read
 Update
 Delete

CRUD testing, that is testing all the data entities according to their life
cycles, is important.

The life cycles for data entities are usually not sufficiently specified in the
data requirements. CRUD testing therefore starts with helping the analysts to
specify sufficient requirements. The actual CRUD testing is sometimes on the
verge of experience-based testing, because it may be based on previous experience
of where CRUD faults appear and on related checklists.

The CRUD checklists provided below may be used as inspiration both for
defining data requirements and for guiding CRUD testing.

CRUD checklist examples are shown here:
Concerning creation of data we may ask:

 Is it possible to create the first?
 Are the contents correct?
 Is it possible to create a new among existing?
 Are the contents correct?
 Is it possible to create the last (the highest number)?
 Are the contents correct?
 Is it possible to create more than what is allowed?
 Is it possible to create if you are not allowed to create?

Concerning the reading of data we may ask:

 Is it possible to read the created data?
 Is it possible to find the data in all the ways it is supposed to be
 found?
 Is it impossible to read data if you are not allowed?

Concerning the updating of data we may ask:

 Is it possible to change where it should be possible?
 Is everything saved?
 Is the change reflected everywhere?
 Is it impossible to change in places where it should be impossible?

2174.4 Experience-Based Testing Techniques

Book_samlet.indb 217 2/19/08 8:15:02 PM

Concerning the deletion of data we may ask:

 Is it possible to delete where it should be possible?
 Is everything deleted?
 Is it possible to delete all that should be deletable?
 Do all deletes have the correct cascading effects?
 Is data that should not be deleted properly protected?

4.4.3 Exploratory Testing
Sometimes it is worthwhile to search in a structured way and use the results
to decide on the future course as they come in. This is the philosophy when
people are looking for oil or mines, and it is the philosophy in exploratory
testing.

Exploratory testing is testing where the tester actively controls the design
of the tests as those tests are performed and uses information gained while
testing to design new and better tests. In other words exploratory testing is
simultaneous:

 Learning
 Test design
 Test execution

Exploratory testing is an important supplement to structured testing. As
with all the nonsystematic techniques it may be used before the structured
test is completely designed or when the structured test has stopped.

It is important that the course of the exploratory testing is documented,
so that we can recall what we have done. Imagine if drillings for oil were not
documented, or if the search for mines in a field were not documented—it
would be a waste of time and money. The idea in exploratory testing is not
that it should not be documented, but that it should be documented as we go
along.

Exploratory testing is not for kids!—nor for inexperienced testers.
Extensive testing experience and knowledge of testing techniques and

typical failures are indispensable for the performance of an effective explor-
atory test. It is also an advantage if the tester has some domain knowledge.

The exploratory tester needs to be able to analyze, reason, and make de-
cisions on the fly; and at the same time have a systematic approach and be
creative. The tester also needs some degree of independence in relation to the
manufacturing of the system—the programmer of a system cannot perform
exploratory testing on his or her “own” system.

Perhaps most importantly the exploratory tester must have an inclination
towards destruction. Exploratory testing will not work if the tester is “afraid”
of getting the system to fail.

Test Techniques218

Book_samlet.indb 218 2/19/08 8:15:02 PM

4.4.3.1 Degrees of Exploratory Testing
One of the forerunners in exploratory testing is the American test guru James
Bach. He has defined various degrees of exploration as illustrated in the figure
below.

Furthest to the right, we have the totally free exploration. The tester simply
sits before the system and starts wherever he or she feels like.

A step to the left, we find the exploratory testing guided by roles. Here
the tester attacks the system under testing assuming a specific user role.
This could, for example, be the role of an accountant, a nurse, a secretary, an
executive manager, or any other role defined for the system. This provides a
starting point and a viewpoint for the testing, which is exploratory within the
framework of the role.

Even further to the left is the exploratory testing guided by a specific task.
Here the tester narrows the framework for the testing even more by testing
within the viewpoint of a specific task defined for a specific role for the system
under testing.

On the borderline between exploratory testing and structured testing we
have the sporadically specified test. Here the tester has sketched the test be-
forehand and takes this as the starting point and guideline for the perfor-
mance of the exploratory testing.

4.4.3.2 Performing Exploratory Testing
No matter which degree of exploration we use, we have to follow the prin-
ciples in the general test process. We must plan and monitor; we must specify,
execute, and record; and we must check for completion.

In the planning we consider what we are going to do and who is going to
do it. We must choose the degree of exploration and describe the appropriate
activities. The testing activities should be divided into one-hour sessions. If
the sessions are shorter we risk not getting an effective flow in the explora-
tion; if they are longer we get tired and the effectiveness goes down.

It is important to make sure that the tester or testers are protected during
the sessions. There should be no phones or other interruptions to disturb the

sporadically
specified tasks roles

fully
specified

loosely
specified

free
exploration

Exploratory

2194.4 Experience-Based Testing Techniques

Book_samlet.indb 219 2/19/08 8:15:02 PM

flow of the testing.
The test specification, execution, and recording are done simultaneously

during the exploratory testing session. Within the given degree of exploration
the tester should allow him- or herself to get distracted—you never know
what you may find.

The course of the testing session may be illustrated like this:

Stock must be taken from time to time to verify that we are on track.
For each session we must:

 Take extensive notes and attach data files, screen dumps, and/or
 other documentation as appropriate
 Produce an overview over findings
 Reprioritize the remaining activities

The exploratory testing can stop when we have fulfilled our purpose.

4.4.3.3 Exploratory Testing Hints
There are a few weaknesses in exploratory testing, of which we need to be
aware. These weaknesses are part of the reasons why exploratory testing must
be a supplement only to structured and specified testing.

The weaknesses in exploratory testing are:

 Exploratory testing does not support automated test, and hence
 regression testing, very well.
 Because the exploratory testing is not specified in advance it cannot

 provide feedback to design before the design is actually
 implemented.
 Even when accompanied by extensive notes there is usually no firm

 documentation of test coverage for the exploratory testing.
 Exploratory testing can be very difficult to use for complex
 functionality; the main thread may easily be lost.
 Note taking is very difficult when working interactively.

Test Techniques220

Book_samlet.indb 220 2/19/08 8:15:03 PM

The last weakness may be overcome by performing exploratory testing as
pair testing. This can work really well and it has a number of benefits. Pair work
sparks more ideas as the two testers inspire each other, and it enables mutual
learning—even when the testers have different levels of experiences.

Extroverted people get more energy from working together, and others are
less likely to interrupt a pair.

The biggest benefit is perhaps that two testers can be focused on two tasks
at the time: One can follow an idea, and the other can take notes. The focuses
should switch between the two testers at regular intervals.

There are of course also a few disadvantages to pair testing. The main one is,
that a divided responsibility is no responsibility—if two people share a respon-
sibility they carry 2% each.

As some people are extroverted, some people are introverted. Introverted
people get drained for energy by working closely together with others.

If the difference in experience is too large it may cause “abandonment”
by the lesser experienced, because he or she may simply opt out. On the other
hand different opinions held by equally “strong” testers may block progress.

4.4.4 Attacks
The attacks technique is a form of security testing, testing how resistant a
product is to those who want to break into it in various ways and for various
reasons, ranging from incidental mistakes, over “fun,” to serious crime.

Security testing is getting more and more powerful and sophisticated. As
the market for e-commerce and e-business is growing and more and more
other applications get Web access, the need for secure systems is growing.
Even so, we are still constantly at least one step behind, and checklists of at-
tacks are very valuable both to analysts defining requirements and to testers.

A product is vulnerable at the places where there is an opening into it;
that is where the product has interfaces. The interfaces a product can have
include, but are not limited to:

 User interface
 Operating system
 API (application programming interface)
 Data storage for example file system

Attacks are used to find areas where the product will fail due to misuse or
defects in these interfaces.

2214.4 Experience-Based Testing Techniques

Book_samlet.indb 221 2/19/08 8:15:03 PM

James Whittaker is one of the pioneers of attacks, and he has created long
lists of useful attacks. A few examples are listed here, grouped by type:

User interface attacks:

 Apply inputs that force all the error messages to occur
 Apply inputs that force the software to establish default values
 Explore allowable character sets and data types
 Overflow input buffers

Stored data attacks:

 Apply inputs using a variety of initial conditions
 Force a data structure to store too many or too few values
 Investigate alternate ways to modify internal data constraints

Media based attacks:

 Fill the file system to its capacity
 Force the media to be busy or unavailable
 Damage the media

Other ways of attacking a product may be trying to make unauthorized

 Access to and control over resources, such as restricted files and data
 Execution of programs or transactions
 Access to and control over user accounts
 Access to and control over privilege management
 Access to and control over network management facilities

The advantage of using attack-driven testing is that security holes can be
closed before they are found by attackers. A pitfall is that this may create a
false sense of security. There is no end to the imagination of those who want
to do wrong, and we have to stay constantly alert to new weak spots. This is
why checklists of any kind must be kept up-to-date with new experiences.

There is more about security testing in Sections 5.1.4 and 5.2.2.

4.5 Static Analysis
Static analysis is a testing type where, in contrast to dynamic testing, the code
under static analysis is NOT executed.

Static testing, especially of code, is usually performed using tool(s), but
the only thing being executed during static analysis is the tool. Static test tools
are discussed in Section 9.3.4.

Traditionally static testing has been performed on code, but here it is ex-
panded to architecture as well.

Test Techniques222

Book_samlet.indb 222 2/19/08 8:15:03 PM

B1

B2

B3

B1

B2

B3

4.5.1 Static Analysis of Code
Many tools dedicated to static analysis are available on the market or as open
source systems. Their capabilities vary a lot and depend very much on the coding
language. Some standard development tools, such as compilers or linkers, are
able to perform limited static analysis.

The static analysis techniques for code discussed here are:

 Control flow analysis
 Data flow analysis
 Compliance to standards
 Calculation of code metrics

4.5.1.1 Control Flow Analysis
A control flow is an abstract representation of all possible sequence of events
(paths) in the execution through a component or a system. The control flow
is the basis for many of the structure-based case design techniques described
earlier.

Control flow goes through basis blocs or nodes of code being executed as
an entity, with an entry point in the beginning and only there, and with an
exit point in the end and only there. The control goes from the starting point
and is transferred from one block to another to the end.

It can be very useful to draw a control flow graph from the code (or the
requirements). It gives an overview over the decisions points, branches, and
paths in a piece of code, and its inherit complexity.

Two simple extracts of control flow graphs are shown here,

More basic blocks in parallel More basic blocks in parallel

Static analysis tools may be used to draw control flow graphs of larger
pieces of code. It is, however, a good idea to train drawing these, because they
give a good understanding of how the code is structured.

A control flow graph does not necessarily give an idea of what the code is
actually doing, but that is not important anyway. We as testers should concen-
trate on the structure, not the functionality.

B2 B3

B1

B4

2234.5 Static Analysis

Book_samlet.indb 223 2/19/08 8:15:04 PM

Static analysis tools can find faults in the control flow, typically:

 “Dead” code (i.e., code that cannot be reached during execution)
 Uncalled functions and procedures

Both dead code and uncalled functions are quite often found in legacy
systems. Undocumented changes and corrections have caused some code to
be circumvented but not removed. The cause of the change is since forgotten,
but nobody maintaining the code has had the courage (or initiative) to get the
unused code removed.

Such unused areas do not present direct risks. They do however disturb
maintenance, and they may unintentionally be invoked with unknown
consequences.

4.5.1.2 Data Flow Analysis
Data flows through the code; that is what IT is all about. The normal life cycle
for a data item, a variable, consists of the phases:

 Declaration—Space is reserved in memory for the variable value
 Definition—A value is assigned to the variable
 Use—The value of the variable is used
 Destruction—The memory set aside for the value of the variable is

 freed for others to use

Some static analysis tools can find anomalies in the data flow in relation
to the variable life cycle.

Anomalies may, for example, be:

 Use before declaration
 Use before definition
 Redefinition before use
 Use after destruction

Any of these anomalies should set the alarm clocks ringing, as it may be a
sign of something being wrong.

If a variable is defined and then redefined before use, is it because the first
or the second definition is superfluous, or is it because a usage statement is
missing?

Some programming languages permit variables to be used before they are
declared; in this case the first usage will be treated as an implicit declaration.

The phases “definition” and “use” may be repeated many times during
the life of a variable.

Test Techniques224

Book_samlet.indb 224 2/19/08 8:15:04 PM

Two different kinds of usage are defined in data flow analysis:

 Computation data use = c-use = data not used in a condition
 Predicate data use = p-use = a data use associated with the
 decision outcome of the predicate portion of a decision statement
 (predicate = condition = evaluates to T or F)

A subpath in the flow is defined to go from a point where a variable is
defined, to a point where it is referenced, that is, where it is used—whatever
kind of usage it is. Such a subpath is called a definition-use pair (du-pair). The
pair is made up of a definition of a variable and a use of the variable.

Because there are two kinds of usages, there are three types of du-pairs,
namely:

 Definition –> c-use
 Definition –> p-use
 Definition –> use (either c or p)

This example shows two du-pairs:

 One definition to p use
 One definition to c use

Read A;

Read B;

if A = 245 then

Write ’Bingo’;

endif;
if A < B then

A = B;

else
A = 0;

endif;

Write A;

p-use of B

c-use of B

Read A;
Read B;
if A = 245 then

Write ʼBingoʼ;
endif;
if A < B then

A = B;
else

A = 0;
endif;

Write A;

04-29.pdf 29-10-2007 15:49:36

2254.5 Static Analysis

Book_samlet.indb 225 2/19/08 8:15:05 PM

Data flow testing is testing in which test cases are designed based on vari-
able usage within the code, that is, testing of du-pairs.

The coverage items for this test case design technique are the control flow
sub paths and full paths through the code. The following table gives an over-
view of the types of coverage defined for data flow testing.

To design test cases with the data flow test technique we concentrate on
one component and for that component we must:

 Number the lines, if they are not numbered already
 List the variables
 List each occurrence of each variable and assign a category
 (definition, p-use, or c-use)
 Identify the du-pairs and their type (c-use or p-use)
 Identify all the subpaths that satisfy the pair
 Derive test cases that satisfy the subpaths

When the final test procedures are designed from the test cases, they will
of course follow a path in the control flow through the code.

There are a few pitfalls that we need to be aware of in connection with
data flow analysis. Data items (variables) may be composed of a number of
single variables. This is, for example, the case for arrays, which are ordered
sequences of individual data items. If we ignore the constituents of composite
variables like arrays and treat them as one data item, we greatly reduce the
effectiveness of data flow testing. Tools will typically respond to an array or
record it as a single data item rather than as a composite item with many
constituents.

An important problem concerning data flow analysis is that sometimes
static analysis tools will report a large number of anomalies that are not in

Name Definition

d All-definition
coverage

percentage of covered subpaths from each vari-
able definition to some use of that definition

duc All data definition
c-use coverage

percentage of covered subpaths from each vari-
able definition to every c-use of that definition

dup All data definition
p-use coverage

percentage of covered subpaths from each vari-
able definition to every p-use of that definition

u All use coverage percentage of covered subpaths from each
variable definition to every use of that definition
(despite the type)

du-path All definition use
path coverage

percentage of covered “simple subpath” from
each variable definition to every use of that
definition

Test Techniques226

Book_samlet.indb 226 2/19/08 8:15:05 PM

fact caused by anything being wrong. These “false alarms” may hide the real
problems in the sheer number of alarms.

4.5.1.3 Compliance to Coding Standard
A coding standard is a guideline for the layout of the code being written in an
organization.

Most static analysis tools can check for standard coding style violations,
for example, missing indentation in IF statements. Some of the more sophis-
ticated tools allow the definition of specific coding standards to check for.

It may seem trivial that coding standards should be defined and adhered
to, but experience shows that it has several advantages, such as:

 Fewer faults in the code, because a good layout of the code enables
 the programmer to keep an overview of what he or she is writing
 Easier component testing, because a well-structured code is easier to
 define test cases for when using white-box techniques
 Easier maintenance, because it is faster for others to overtake code if
 all code is written in an identical style

There are no disadvantages in requiring adherence to a coding standard,
other than the programmers having to get used to it. It is even possible to get
tools to format “rough” code according to coding standards.

4.5.1.4 Calculation of Code Metrics
Static analysis tools can provide measurements of different aspects of the
code like:

 Size measures—Number of lines of code, number of comments
 Complexity
 Number of nested levels
 Number of function calls—Fan-out

Lines of code (LOC) can be reported as can lines of document lines. The
ratio between these may be calculated as a derived measurement.

Measurements related to code lines may be difficult to work with. The
sheer definition of a “code line” is not always as simple as it may sound. Num-
bers of code lines may also easily be manipulated by the programmers, if the
measurements are used to quantify their efficiency.

Code complexity is a measure for how “tangled” the code is. The complexity
is related to the number and types of decisions in the code. It is interesting
from a testing point of view because it has an impact on the test effort: the
higher the complexity, the more test cases to get high decision and condition
coverages.

2274.5 Static Analysis

Book_samlet.indb 227 2/19/08 8:15:05 PM

The most commonly used complexity measure is McCabe’s Cyclomatic
Complexity. It was introduced by Thomas McCabe in 1976 and is often simply
referred to as complexity, as CC or as McCabe’s complexity.

McCabe’s Cyclomatic Complexity is a measure - a single ordinal num-
ber— of soundness of components. It measures the number of linearly inde-
pendent paths through the code. It is intended to be independent of language
and language formats.

The original definition of McCabe’s Cyclomatic Complexity is:
MCC = (L – N) + 2*B

where
L: Number of branches (lines in the flow graph)
N: Number of sequential blocks (basis blocks or nodes)
B: Number of broken sequences (this is used when we measure for more

than one component. This is very rarely done, so B is usually = 1)

 In this simple flow graph we have
 L = 1 N = 2 and B = 1 and therefore
 MCC = (1 – 2) + 2 x 1 = 1

For this flow graph

we have L = 4 N = 4 and B = 1, and therefore
MCC = (4 – 4) + 2 x 1 = 2

There are more simple ways of calculating McCabe’s Cyclomatic Complexity:
One way is based on a count of decisions and decision outcomes. It could

be expressed like this
MCC = (SUM (branches –1) for all decisions) + 1

IF statements always have two branches, so if we only have IF statements in
the code we are looking at, we’ll get

MCC = SUM(1) for all IF statements)) +1 = number of IF statements
+1.

Constructions like CASE have more branches, so if we have a piece of code
with two IF statements and 1 CASE statement with 10 possible outcomes, we
would have MCC = 1 + 1 + 9 + 1.

The third way of calculating McCabe’s Cyclomatic Complexity is by counting
so-called regions in the code. A region is a closed area found in the flow graph.

04-30.pdf 29-10-2007 16:01:53

04-31.pdf 29-10-2007 16:04:37

Test Techniques228

Book_samlet.indb 228 2/19/08 8:15:06 PM

The expression is
MCC = number of regions + 1

In the flow graph shown here, we have 1 region and we therefore have
MCC = 2.

The graph shown below is created by a static analysis tool. The tool has
calculated the McCabe’s CC for the component to be 9.

McCabe’s Cyclomatic Complexity is a good indicator for the test effort.
Mathematical analysis has shown that it gives the exact number of tests
needed to test every decision point in a program for each outcome.

Some testers have experienced that there is a positive linear connection
between the number of faults and the McCabe’s CC (i.e., that the higher the
CC the higher the number of faults). Others have found that the connection is
rather that a low CC and a high CC indicate relatively fewer faults, while more
faults are found in the areas where the CC is around average. Try to get your
own measurements for this!

04-32.pdf 29-10-2007 16:08:32

2294.5 Static Analysis

Book_samlet.indb 229 2/19/08 8:15:06 PM

A rule of thumb says that the McCabe’s CC should not be more than 10.
If we find a higher CC in a component it should be revisited—maybe it could
be restructured or divided. McCabe’s CC measures have however been seen up
to more than 3,000, so we should also use visual judgment of the control flow
graphs to determine the test effort.

Cyclomatic complexity can be used for other purposes than test planning,
for example, in risk analysis related to:

 Code development
 Implementation of changes in maintenance
 Reengineering of existing systems

Other complexity measures than McCabe’s exist. They are, however, rare-
ly used, except perhaps for the Halstead complexity measure, an algorithmic
complexity measure.

4.5.2 Static Analysis of Architecture
In the recent testing literature the static analysis objects have been expanded
to include the architecture of the product as well as the classic code object.

The code has a structure that can be analyzed, and so has the product or
system as a whole. This may, for example, be:

 Structure of components in the product calling/using each other
 Menu structure of a graphical user interface for a product
 Structure of pages and other features in a Web product

The first and the second of these types may be tested with the help of a
tool. We can therefore say that static analysis may be used to test these aspects
of products.

4.5.2.1 Static Analysis of a Web Site
A Web site is a hierarchical structure composed of Web pages with elements
such as tables, text, pictures, and links to other pages, both internally to the
Web site itself and to external Web sites. The structure of a Web site is de-
scribed in HTML: Hyper Text Mark-up Language.

Many tools exist to analyze the HTML code and the structure and detailed
composition of Web sites, that is to perform static analysis of Web sites.

The stakeholders for the static analysis information are both analysts, de-
signers, testers, and those in charge of the maintenance of the Web sites, the
Web masters.

Test Techniques230

Book_samlet.indb 230 2/19/08 8:15:06 PM

One of the results of such an analysis is a graph showing the structure of
the Web site. A graph can provide an overview of the tree structure or hierarchy
of the site and show the depth, complexity, and balance of the structure.

A very simple Web site is shown here. The R is the root, a T illustrates a non-
link tag, for example a table, and an L illustrates a link.

The graphs can be very colorful and look like the most amazing fireworks.
The information extracted from the graphs can be used to:

 Test whether requirements for the Web site, for example depth and
 balance of the Web site, have been fulfilled, or if the Web site needs
 to be restructured

 Estimate test effort
 Assess usability
 Asess maintainability

A rule of thumb is that the more balanced the Web site tree is, the low-
er the test and maintenance efforts are going to be, and the higher the
usability and vice versa.

Web sites are extremely dynamic products. The static analysis of a site
prior to its release is only the tip of the iceberg of testing and monitoring of a
Web site. Dynamic analysis of the behavior of a site should be performed on a
regular basis to identify problems like:

 Broken links
 Incomplete downloads
 Deteriorating performance
 Orphaned files

R

T

LT T

T

T

T

T

T

T

TT

T

T

04-34.pdf 29-10-2007 16:15:37

2314.5 Static Analysis

Book_samlet.indb 231 2/19/08 8:15:07 PM

Furthermore, information may be obtained about:

 Access patterns (where do users start and where do they end their
 visits)
 Navigation patterns
 Activity over time
 General performance
 Page-loading speed

The Web site structure should also be monitored at regular basis, as Web
sites are likely to grow and change structure in an ad hoc manner.

4.5.2.2 Call Graphs
The analysis of the architectural structure of a product is on the borderline
between design and testing. In the architectural design the product is decom-
posed into smaller and smaller components. Components call other sub rou-
tines or functions in other components; in object-oriented design we say that
classes provide methods for others to use. These dependencies or couplings
can be illustrated in call graphs produced by tools.

Static architecture analysis tools can also provide measurements related
to the coupling, such as:

 Fan-in: Number of calls or usages of a specific function or methods
 made from other functions or methods (or the main program)
 Fan-out: Number of calls or usages of functions or methods made
 from a specific component
 Henry and Kafura metrics: Coupling between modules
 Bowles metrics: Module and system complexity
 Troy and Zweben metrics: Modularity or coupling; complexity of
 structure
 Ligier metrics: Modularity of the structure chart

These metrics may be more detailed and specific depending on the archi-
tectural paradigm.

Both the call graphs and the corresponding measurements provide valu-
able information to the test planning. This information may for example be
used to:

 Determine integration high-risk areas (high fan-out and fan-in)
 Determine detailed integration testing sequence
 Determine intercomponent testing approach

Especially in object-oriented architecture, it is relevant to know the dy-

Test Techniques232

Book_samlet.indb 232 2/19/08 8:15:07 PM

namic dependencies, that is, how often a method is used during execution of
the product. This information can be combined with the static architectural
information to strengthen the test planning even more.

4.6 Dynamic Analysis
Dynamic analysis is the process of evaluating a system or a component based
upon its behavior during execution.

There are two aspects of dynamic analysis, namely:

 Dynamic—Code is being executed
 Analysis—Finding out about the nature of the object and its behavior

Dynamic analysis cannot be done without tool support. Chapter 9 dis-
cusses the testing tool types.

A dynamic analysis tool instruments the code in order to catch the rel-
evant run-time information. This means that extra code is added to the code
written by the developer. The effect of this is that it is not strictly the “real”
code we are analyzing. In most cases this is without any importance. The
instrumentation may, however, have an adverse impact on performance, and
that can pose problems if we are testing time-sensitive real-time software.

In dynamic analysis we prepare the software code we are going to analyze.
The component or larger object is then executed. This execution may be ex-
ecution of test cases for other test purposes, or it may be execution of specific
scripts produced for the analysis.

The great advantages of dynamic analysis are that it

 Provides run-time information otherwise difficult to obtain
 Provides information as a by-product of dynamic testing
 Finds faults that it is almost impossible to find in other ways

The dynamic analysis tool reports on what is going on during execution: It
provides run-time information about the behavior and state of software while
it is being executed. The information we can get from this covers:

 Memory handling and memory leaks
 Pointer handling
 Coverage analysis
 Performance analysis

4.6.1 Memory Handling and Memory Leaks
Memory handling is concerned with allocation, usage, and deallocation of
memory.

The tools can detect memory leaks, where memory is gradually being

2334.6 Dynamic Analysis

Book_samlet.indb 233 2/19/08 8:15:07 PM

filled up during extended use. This happens if we keep on allocating memory
in the program and forget to deallocate memory when we no longer need it. If
a program with a memory leak keeps on running we can end up with no more
available memory. This will cause a failure.

Memory is automatically deallocated when the program execution stops;
this is one of the reasons why memory leaks are not always detected during
dynamic testing. When we test we rarely run the program for longer periods,
as it might be run in real life.

The advantage of dynamic analysis in connection with memory leaks is
that the analysis can detect the possibility of memory leaks long before they
actually happen.

4.6.2 Pointer Handling
Pointers are used to handle dynamic allocation of memory. Instead of working
with a fixed name or address of a variable we let the system find out where
the actual location is, and we use a pointer to point to this location in the
program.

The usage of pointers can go wrong in a number of ways. Pointers can,
for example, be unassigned when used, lose their object, or point to a place
in memory to which it is not supposed to point, for example beyond an array
border or into some protected part of memory. A wrong pointer can cause for
example part of the program or data stored in memory to be overwritten.

It may be very difficult to find the defects, underlying failures caused by
wrong pointer handling. These failures have a tendency to be periodic, that is,
the program may run for a long time and then suddenly start to give wrong
results or even crash.

Dynamic analysis tools can identify unassigned pointers, and they can
also detect faults in pointer arithmetic, for example, if the addition of two
pointers results in a pointer that points to an invalid place in memory.

4.6.3 Coverage Analysis
The coverage obtained in an executed test can be measured by analysis tools.
These tools provide objective measurement for some structural or white-box
test coverage metrics, for example:

 Statement coverage
 Branch coverage

The tools provide objective measurements to be used in the checking
against test completion criteria in a fast and reliable way.

Some tools can also deliver reports about uncovered areas. The more fancy
ones produce colored reports where covered code is shown in one color and
uncovered code in another. This is a great help when more test cases must be
designed to obtain a higher coverage.

Test Techniques234

Book_samlet.indb 234 2/19/08 8:15:08 PM

4.6.4 Performance Analysis
All too many products have no or insufficient performance requirements and
turn out to be unable to cope with real-life volumes and loads. Performance
analysis aims at measuring the performance of a product under the controlled
circumstances before the product is released.

It is much better to get these aspects tested before the product breaks
down when the first set of users starts using it. Tools may be used to measure
what the performance is under given circumstances.

The performance testing tools can provide very useful reports based on
collected information, often in graphical form. The tools can provide information
about “bottle neck” areas relatively inexpensively before the product hits the
real world.

Some companies have specialized in performance testing and will test
products using these tools. This is a very useful alternative to investing in the
tools yourself.

4.7 Choosing Testing Techniques
The big question remaining after all these descriptions of wonderful test case
design techniques is: Which testing technique(s) should we use? The answer
to that is: It depends!

There is no established consensus on which technique is the most effective.
The choice depends on the circumstances, including the testers’ experience
and the nature of the object under testing.

With regard to the testers’ experience it is evident that a test case design
technique that we as testers know well and have used many times on similar
occasions is a good choice. All things being equal there is no need to throw old
techniques overboard. Despite the general feeling that everything is changing
fast, techniques do not usually change overnight. On the other hand, we need
to be aware of new research and new techniques, both in development and
testing becoming available from time to time.

A little more external to the testers’ direct choice is the choice guided by
risk analysis. Certain techniques are sufficient for low-risk products, where-
as other techniques should be used for products or areas with a higher risk
exposure. This is especially the case when we are selecting between structural
or white-box techniques. Testing and risk are discussed in Section 3.5.

Even further away from the testers, the choice of test techniques may
be dictated by customer requirements, typically formulated in the contract.
There is a tendency for these constraints to be included in the contract for
high-risk products. It may also be the case for development projects contracted
between organizations with a higher level of maturity. In the case of test case
techniques being stipulated in a contract, the test responsible should have

2354.7 Choosing Testing Techniques

Book_samlet.indb 235 2/19/08 8:15:08 PM

had the possibility of suggesting and accepting the choices.
Finally the choice of test case design techniques can be guided or even

dictated by applicable regulatory standards.

4.7.1 Subsumes Ordering of Techniques
It is possible to define a sort of hierarchy of the structural test case design
techniques based on the thoroughness of the techniques at 100% coverage.

This hierarchy is called the subsumes ordering of the techniques. The verb
“subsume” means “to include in a larger class.” The subsumes ordering show
which techniques are included in techniques placed higher up in the order.
The ordering is shown here.

The ordering can only be read downwards. We can for example see that
condition determination subsumes branches. Paths also subsume branches;
but we cannot say anything about the ordering of condition determination in
relation to paths.

The subsumes ordering does not tell us which technique to use, but it
shows the techniques’ relative thoroughness. It also shows that it does not
make sense to require both a 100% branch and a 100% statement coverage,
because the latter will be superfluous.

4.7.2 Advice on Choosing Testing Techniques
No firm research conclusions exist about the rank in effectiveness of the func-
tional or black-box techniques. Most of the research that has been performed
is very academic and not terribly useful in “the real testing world.”

One conclusion that seems to have been reached is: There is no “best”
technique. The “best” depends on the nature of the product.

We do, however, know with certainty that the usage of some technique is
better than none, and that a combination of techniques is better than just one
technique.

We also know that the use of techniques supports systematic and meticu-
lous work and that techniques are good for finding possible failures. Using
test case design techniques means that they may be repeated by others with

Statements

Multiple condition

Branches Conditions

Condition determination
Paths

Test Techniques236

Book_samlet.indb 236 2/19/08 8:15:08 PM

approximately the same result, and that we are able to explain our test cases.
There is no excuse for not using some techniques.
In his book The Art of Software Testing, Glenford J. Meyers provides a strat-

egy for applying techniques. He writes:

 If the specification contains combinations of input conditions,
 start with cause-effect graphing
 Always use boundary value analysis (input and output)
 Supply with valid and invalid equivalence classes (both for input

 and output)
 Round up using error guessing
 Add sufficient test cases using white-box techniques if completion

 criteria has not yet been reached (providing it is possible)

As mentioned earlier some research is being made into the effectiveness
of different test techniques.

Stuart Reid has made a study on the techniques equivalence partitioning,
boundary value analysis, and random testing on real avionics code. Based on
all input for the techniques he concludes that BVA is most effective with 79%
effectiveness, whereas EP only reached 33% effectiveness. Stuart Reid also
concludes that some faults are difficult to find even with these techniques.

Questions
1. Why is it a good idea to use test techniques?
2. What is the other, perhaps more common, name for specification-
 based testing techniques?
3. What is the basic idea in equivalence partitioning?
4. Why may equivalence partitioning reduce the number of test cases?
5. What is boundary value analysis?
6. What are the coverage elements for equivalence partitioning and
 boundary value analysis?
7. What should happen to invalid values?
8. Where do we find most faults in connection with equivalence
 partitioning and boundary value analysis?
9. When is domain analysis used?
10. What are the four points defined in domain analysis?
11. What are the coverage elements for domain analysis?
12. How many columns does a decision table have depending on the
 number of input conditions?
13. What is the coverage element for decision tables?
14. How can you fill in a decision table?
15. What is one of the main application areas for decision tables?

237Questions

Book_samlet.indb 237 2/19/08 8:15:09 PM

16. What is a cause-effect graph?
17. How is cause-effect graph coverage defined?
18. What are the building blocks of a cause-effect graph?
19. What does an arch mean in a cause-effect graph?
20. What does a transition consist of?
21. What is the coverage measure for state transition testing?
22. What is the lowest coverage level in state transition testing?
23. What should be tested on top of the cases dictated by the coverage?
24. What is the main difficulty with state machines?
25. What are the two types of notes in a classification tree?
26. What are the two rules that must be observed when a classification
 tree is constructed?
27. With what does a classification tree end?
28. What is the coverage element for a classification tree?
29. What should be considered input in a classification tree?
30. When can pairwise testing be used?
31. What is the coverage element in pairwise testing?
32. What characterizes an orthogonal array?
33. How can an orthogonal array be described?
34. What is the Allpairs algorithm?
35. What is the weakness of pairwise testing?
36. What is a use case?
37. How can a use case be the basis for testing?
38. What is syntax testing used for?
39. Who have defined a notation form for syntax?
40. How can you define invalid syntaxes?
41. What is structure-based testing also known as?
42. How should structure-based testing be used in relation to
 specification-based?
43. From where must the expected results be derived in structural
 testing?
44. How does a basic block end?
45. What is a statement?
46. How is statement coverage defined?
47. What is decision testing?
48. How is decision coverage defined?
49. What is a condition?
50. How is condition coverage defined?
51. How many test cases do we usually need to get 100% condition
 coverage for one decision?
52. How many test cases do we need to get 100% branch condition
 combination coverage for one decision?

Test Techniques238

Book_samlet.indb 238 2/19/08 8:15:09 PM

53. What is an optimized expression?
54. What is done when designing test cases for modified condition
 decision testing?
55. What is a loop?
56. What is a LCSAJ?
57. How do we find the LCSAJs in a component?
58. What are the main pitfalls when working with loops?
59. What is path testing?
60. What should, for example, be tested in path testing?
61. What causes path testing to be very difficult?
62. At which test level(s) is intercomponent testing used?
63. What is the measure for the number of calls made to a specific
 function?
64. What is a taxonomy?
65. Where can examples of defect taxonomies be found?
66. What can fault injection be used for?
67. What is important in connection with fault injection and mutation
 testing?
68. What is the basis for experience-based testing?
69. What do we especially need to do in errorguessing?
70. What characterizes exploratory testing?
71. What are the three degrees of exploratory testing?
72. What is important during exploratory testing?
73. What are the weaknesses of exploratory testing?
74. How can exploratory testing (maybe) be enhanced?
75. What are we looking for in attack testing?
76. What is static analysis?
77. What is a control flow graph?
78. What can control flow analysis find?
79. What is the normal life cycle for a variable?
80. What is p-use and c-use?
81. How can coverage for data flow testing be measured?
82. What may be a problem with data flow testing?
83. What are complexity measures used for?
84. What are the advantages of coding standards?
85. What are the name and the definition of the most used complexity
 measure?
86. When should we look at the code as perhaps being too complex?
87. How can we get an overview of a Web site?
88. How is the test effort connected to the “shape” of a Web site?
89. When can we stop monitoring Web sites?
90. What is fan-in and fan-out?

239Questions

Book_samlet.indb 239 2/19/08 8:15:09 PM

91. What is dynamic analysis?
92. What is a memory leak?
93. What may go wrong with pointers?
94. What is coverage?
95. How can a performance problem be reported?
96. Which test techniques is the best?
97. What is the subsumes order of test techniques?
98. Which test technique is better than none?
99. Which technique does G.J. Meyers recommend as the first one to
 use?
100. How is the effectiveness of a test after, say, three months in
 production calculated?

Test Techniques240

Book_samlet.indb 240 2/19/08 8:15:09 PM

T
es

t
d

es
ig

n
 it

em
 n

o
.:

56

T
ra

ce
s:

 R
eq

. (
1)

 –
 (

6)

A
ss

u
m

p
ti

o
n

s:
 P

ur
e

te
xt

 c
on

ta
in

s
at

 le
as

t o
ne

 le
tte

r
T

es
t

ca
se

s
D

o
m

ai
n

 1

A
sp

ec
t

1
D

o
m

ai
n

 2

A
sp

ec
t

2
D

o
m

ai
n

 3

ta
g

1

2
3

4
5

6
7

8

al
l i

np
ut

s
an

d
ty

pe
s

of
 li

st
s

in

pu
t t

yp
e

p
u

re
 t

ex
t

56
-1

x

x
x

p
u

re
 n

u
m

be
r

56
-2

x

x

x

m
ix

tu
re

56

-3

x

em
p

ty

56
-4

x

m

at
ch

?
n

o

56
-5

x

x

x

x

ye
s

no
. o

f m
at

ch
es

1

56
-6

x

x

>
1

56
-7

x

x

ty

pe
 o

f m
at

ch

na
m

e
ho

w
 m

uc
h

al
l

56
-8

x

so
m

e
56

-9

x

p
h

o
n

e
no

.

56

-1
0

x

x

st

at
e

of
 li

st

em
p

ty

56
-1

1

x

no
t e

m
pt

y
1

na
m

e
+

1
no

.
ye

s

56

-1
2

x
x

x
x

x
x

n
o

56

-1
3

x

1

na
m

e
+

m
an

y
no

.
ye

s

56

-1
4

x
x

x
x

x

n
o

56

-1
5

x

m

an
y

na
m

es
 +

 1
 n

o.

ye
s

56
-1

6
x

x
x

x

x

n
o

56

-1
7

x

Appendix 4A Classification Tree Example

241Appendix 4A

Book_samlet.indb 241 2/19/08 8:15:10 PM

Book_samlet.indb 242 2/19/08 8:15:11 PM

5
CHAPTER

Contents

5.1 Quality Attributes
 for Test Analysts

5.2 Quality Attributes
 for Technical Test
 Analysts

Testing of Software
Characteristics

A standard definition of the quality of a product is the degree
to which the product fulfills the expectations the customers

and users have for it. We test to get information about the
quality, that is, information about the fulfillment of the specified
requirements, expectations, and/or implied needs.

The better the requirements, expectations, and implied needs
are known, understood, and documented, and the better these
specifications are, the easier it is for the developers to produce a
satisfactory product and the easier it is for testers to test it. This
applies both for sequential, iterative, and agile development.

This chapter is about quality characteristics or quality attributes,
as they are also called. Quality attributes represent a way of struc-
turing and expressing the expectations for a product.

In a way this chapter is superfluous for testers. It is, however, a very
good idea for testers to understand what quality attributes are
and how they may be expressed. With this understanding testers
can contribute to the quality of a product in a number of ways
from the very start of the development life cycle, for example,
by expressing requirements in a testable way, reviewing require-
ments specifications for completeness and testability, preparing
of tests to cover requirements, expectations, and implied needs,
and dynamic testing of these.

The quality of a product should be measured both with
regard to what the product shall do—the functional quality
attributes—and with regard to how the functionality shall
present itself and behave—the nonfunctional or functionality-
sustaining attributes.

243

Book_samlet.indb 243 2/19/08 8:15:12 PM

The ISO 9126 standard, a standard providing a quality model for product
quality, lists the following quality attributes (also sometimes called quality
factors):

 Functionality
 Reliability
 Usability
 Efficiency
 Maintainability
 Portability

This standard is used as the basis for this chapter.
The test analyst is concerned with the functional and the usability qual-

ity attributes, and the technical test analyst is concerned with the other four
quality attributes. Both are concerned with security testing, though from dif-
ferent perspectives.

ISO 9126 expresses that compliance to relevant standards and regulations
should be verified for all the quality attributes. This is regarded as a part of the
requirements specification to be tested under all circumstances and will not
be discussed further here.

5.1 Quality Attributes for Test Analysts
The functionality is what the product can do. Without functionality we don’t
have a product at all. The functionality supports the users in their daily work
or their leisure, as the case might be.

Functionality may be tested at almost all test levels. In component testing
we can test the functionality implemented in single components; in system
testing we can test functionality implemented in single systems across a
number of integrated components; and in product testing we can test func-
tionality implemented in the entire product. In testing how the functionality
meets the expectations we can use most of the testing techniques discussed in
Chapter 4.

In ISO 9126 language, the quality attributes cover the existence of a set
of functions and their specified properties in the product. The functions are
those that satisfy stated or implied needs, from the point of view of a stated
or implied set of users.

ISO 9126 breaks the functionality attribute into the following sub-
attributes:

 Suitability
 Accuracy
 Interoperability
 Security

Testing of Software Characteristics244

Book_samlet.indb 244 2/19/08 8:15:12 PM

This list may be used as a checklist for producing requirements specifica-
tions, as well as for structuring the functionality testing, if this is not being
based strictly on a specification. Each of the subattributes is discussed in more
detail later.

Usability, a nonfunctional attribute, is handled at the end of the section.

5.1.1 Functional Testing
5.1.1.1 Suitability Testing
In suitability testing we test the requirements or needs concerned with the
presence and appropriateness of a set of functions for specified tasks and user
objectives. In other words we determine whether the software is suitable for
helping the user execute his or her intended tasks.

It must be remembered that (software) products are never the goal in
itself. They are produced to support their users in doing their real job. Suit-
ability of a product is about how the functionality of the product supports the
tasks the users are performing.

An accountant’s job is to keep accounts. This can be done entirely using pen
and paper. The accountant may however use a computer system to help. When
the accountant has entered the data, the system may be able to store them,
calculate sums from them, and produce reports presenting the data on the
screen and on paper.

If the computer system does not calculate the needed sums, the suitability
is lower than if it did.

Usually the largest part by far of the requirements is requirements belong-
ing to the suitability attribute.

The basic way all software products work is to have and/or to allow entry
of some data, to handle the data in appropriate ways, and to present the data
and the handling results.

The very short story about what detailed suitability could concern is:

 Data availability (i.e., how do we get data, both in terms of back-
 ground or reference data and/or data from other system informa-
 tion and in terms of data input and change facilities and the associ-
 ated levels of data validations)

 Data handling (i.e., what is data used for, for example, as event-driven
 interrupts or signals and—not least: calculations, actions, and so forth
 based on data and other input)

 Result presentation (i.e., output facilities, for example, in terms of
 windows and reports)

2455.1 Quality Attributes for Test Analysts

Book_samlet.indb 245 2/19/08 8:15:12 PM

The list is by no means exhaustive. It should, however, give an idea of how
functionality requirements may be structured. Requirements tools, such as
UML, provide help in expressing the suitability requirements.

A few examples of suitability requirements could be:
[D.72] The product shall contain a list of all postal codes in the United Kingdom.
[K.397] A postal code must be entered as part of an address.
[K.398] The postal code may be typed directly or selected from the list of
postal codes.

Suitability is often expressed in use cases, because use cases provide an
excellent way of describing what the users’ tasks are and how the software
product should support these.

Suitability testing can take place at all testing levels. All of the techniques
discussed in Chapter 4 may be used in suitability testing, though use case test-
ing seems to be the best.

ISO 9126 references ISO 9241-10 and states that its definition of suit-
ability corresponds to suitability for the task in that standard. ISO 9241-10
defines that suitability for the task means that the dialogue should be suitable
for the user’s task and skill level.

This implies that suitability is closely related to operability, a subattribute
of usability discussed in Section 5.1.2.

5.1.1.2 Accuracy Testing
In accuracy testing we test the requirements or needs concerned with the
product’s ability to provide the right or agreed upon results or effects.

A more detailed accuracy specification could concern:

 Algorithmic accuracy: Calculation of a value from other values and
 the correctness of function representation

 Calculation precision: Precision of calculated values
 Time accuracy: Accuracy of time related functionality
 Time precision: Precision of time related functionality

Accuracy requirements are often implied. If in doubt about these attri-
butes during testing it is better to ask, rather than to assume, especially if you
are not an absolute domain expert.

A few examples of accuracy requirements could be:
[230] During calculation all money values shall be rounded; except in
the Japanese version, where money values always shall be truncated.
[232] All money calculations in euros shall be performed with three decimals.

Testing of Software Characteristics246

Book_samlet.indb 246 2/19/08 8:15:13 PM

[233] All money calculations in currencies other than euros shall be performed
with two decimals.
[234] The system shall present all values for money with two decimals on the
user interface and in reports.

Accuracy can be tested at all testing levels, the earlier the better. Some ac-
curacy testing may even take place as static tests of design and code. Many of
the techniques discussed in Chapter 4 may be used in accuracy testing.

5.1.1.3 Interoperability Testing
In interoperability testing we test the requirements or needs concerned with
the ability of our software system to interact with other specified systems.

No software system stands alone; it will always have to interact with other
systems in the intended deployment environment, such as hardware, other
software systems like operating systems, database systems, browsers, and be-
spoken systems, external data repositories, and network facilities.

The interoperability attributes are concerned with the specifications of all
the interfaces the software system has to the external world at the time of
deployment. The external systems may be part of the product being produced,
or already existing products that we need to interface with.

Detailed interoperability could concern:

 Inbound interoperability: Ability to use output from standard, third
 party, or in-house products as input

 Outbound interoperability: Ability to produce output in the format
 used by standard, third-party, or in-house products

 Spawnability: Ability to activate other products
 Activatability: Ability to be activated by other products

It can be a huge task to test the interoperability because of the sheer num-
ber of possible combinations of interfaces for a system. It is often practically
and/or economically impossible to achieve full coverage of all possible combi-
nations. The Allpairs testing technique discussed in Section 4.1.7 can be used
to select combinations. The intercomponent testing technique discussed in
Section 4.2.9 is useful for designing test cases for interoperability testing.

A few examples of high-level interoperability requirements could be:
[I.509] The system shall obtain a record of a patient’s hospitalization history
from the central health register.
[I.87] When a patient is discharged, his or her hospitalization history shall be
updated in the central health register.
[I.4] A discharge letter shall be produced by the letter-writer module when a
patient is discharged.

2475.1 Quality Attributes for Test Analysts

Book_samlet.indb 247 2/19/08 8:15:13 PM

Interoperability testing usually takes place at the system integration test-
ing level.

Interoperability should not be confused with adaptability or replaceability,
discussed in Section 5.2.6.

5.1.1.4 Functional Security Testing
In security testing we test the requirements or needs concerned with the ability
to prevent unintended access and resist deliberate attacks intended to gain
unauthorized access to confidential information, or to make unauthorized
modifications to information or to the program so as to provide the attacker
with some advantage or so as to deny service to legitimate users.

Detailed security could be concerning:

 Activity auditability: Log facilities for activities, actors, and so forth
 Accessability: Access control mechanisms
 Self-protectiveness: Ability to resist deliberate attempts to violate

 access control mechanisms
 Confinement: Ability to avoid accidental unauthorized access to
 facilities outside the application
 Protectiveness: Ability to resist deliberate attempts to access
 unauthorized facilities outside the application
 Data integrity: Protection against deliberate damage of data
 Data privacy: Protection of data against unauthorized access

Security testing can be split into functional security testing and technical
security testing. In functional security testing we test the fulfillment of
security attributes that can be explicitly expressed in requirements. These are
typically requirements pertaining to the two first and the last of the attributes
listed earlier.

A few examples of functional security requirements could be:
[623] The system shall ensure that each registered user is member of at least
one of the specified user groups.
[65] The system shall ensure that only users with delete privilege may discharge
patients.
[72] The system shall ensure that only users with extended read privilege may
see the full hospitalization history for a patient.

Functional security testing can be performed at all testing levels, again
the earlier the better, also using static test of design and code. Many of the
techniques discussed in Chapter 4 may be used in functional security testing,
not the least of which are the defect-based techniques discussed in Section 4.3
and the experience-based techniques discussed in Section 4.4. .

Testing of Software Characteristics248

Book_samlet.indb 248 2/19/08 8:15:13 PM

5.1.2 Usability Testing
Usability is the suitability of the software for its users, in terms of the effec-
tiveness, efficiency, and satisfaction with which specified users can achieve
specified goals in particular environments or contexts of use.

The effectiveness of a software product is its capability to enable users to
achieve specified goals with accuracy and completeness. The efficiency of a
product is its capability to enable users to expend appropriate amounts of
resources in relation to the effectiveness achieved. The satisfaction of a product
is its capability to satisfy users.

5.1.2.1 Users Concerned with Usability
The usability attribute is related to users. It is important to get a complete
overview of potential user groups and to take any kind of user characteristics
into account when working with usability.

A user group for a product is a group of people who will be affected in
similar ways by the product. A user group is not just the people entering data
into the product and looking at the screen, though this is certainly an impor-
tant user group. This group may indeed be divided into frequent users, occa-
sional users, and rare users, or other relevant subgroups. User groups may also
consist of those in charge of installing the product and those monitoring and
maintaining it. Groups may be those getting information from the product,
for example, in the form of reports or letters; and it may be those having to be
near the product without actually interfering with it.

The list of appropriate user groups is of course very product-sensitive, and
care should always be taken not to forget a potential user group.

For each of the user groups it is necessary to look at different characteristics.
This could, for example, include:

 Age (e.g., preschool, children, teens, young adults, mature adults,
 and elderly)
 Attitude (e.g., hostile, neutral, enthusiastic)
 Cultural background
 Education (e.g., no education yet, illiterate, basic education, middle
 education, workman, university education)
 Disabilities (e.g., people who are dyslexic, color-blind, blind, partially
 sighted, deaf, mobility-impaired, or cognitively disabled)
 Gender
 Intelligence

2495.1 Quality Attributes for Test Analysts

Book_samlet.indb 249 2/19/08 8:15:13 PM

5.1.2.2 Usability Subattributes
The ISO 9126 standard classifies usability as a nonfunctional quality attribute.
It has got to do with how the functionality presents itself to the users. How-
ever, there is more to it than meets the eye; usability covers much more than
just the look and feel of the product.

ISO 9126 breaks the usability attribute into the following subattributes:

 Understandability
 Learnability
 Operability
 Attractiveness

 Understandability has got to do with how difficult it is to recognize the
logical concept and find out how to apply it in practice. This may cover the:

 Extent to which the system maps the concepts employed in the
 business procedures
 Extent to which existing nomenclature is used
 Nature and presentation of structure of entities to work with
 Presentation of connections between entities

 Learnability concerns the learning curve for the product. This may cover the:

 Extent to which a user of the system can learn how to use the
 system without external instruction
 Presence and nature of on-line help facilities for specified parts of

 the system
 Presence and nature of off-line help facilities for specified parts of

 the system
 Presence and nature of specific manuals

 Operability is about what the product is like to use and control in deploy-
ment. This may cover the:

 Presence and nature of facilities for interactions with the product
 Consistency of the man-machine interface
 Presence, nature, and ordering of elements on each form
 Presence and nature of input and output formats
 Presence and nature of means of corrections of input
 Presence and nature of navigational means
 Number of operations and/or forms needed to perform a specified

 task

Testing of Software Characteristics250

Book_samlet.indb 250 2/19/08 8:15:14 PM

 Format, contents, and presentation of warnings and error messages
 Presence and nature of informative messages
 Pattern of human operational errors over stated periods of time un-

 der stated operational profiles according to defined reliability models

 Attractiveness has got to do with how the users like the system and what
may make them choose to acquire it in the first place. This may cover the:

 Use of colors
 Use of fonts
 Use of design elements, such as drawings and pictures
 Use of music and sounds
 Use of voices (male and female), languages, and accents
 Layout of user interfaces and reports
 Presence and nature of nontechnical documentation material
 Presence and nature of technical documentation material
 Presence and nature of specified demonstration facilities
 Presence and nature of marketing material

5.1.2.3 Accessibility
In recent years there has been more and more focus on equal opportunities,
not the least of which are for people with disabilities. This also concerns soft-
ware systems, which must be accessible and operable for everybody.

Rules are, for example, expressed in the Disability Discrimination Act covering
United Kingdom and Australia, and Section 508 for the United States.

A special and important attribute for usability of a product is therefore
accessibility, even though this is not explicitly mentioned in ISO 9126.

In this context accessibility is the ease with which people with disabilities
can operate the product.

Accessibility may cover the:

 Use of colors, especially mixtures of red and green
 Possibility of connecting special facilities, such as speaker reading
 the text aloud, Braille keyboard, voice recognition, and touch screens
 Possibility of using the product entirely by key strokes and/or voice

 commands
 Facilities for multiple key pressure using only one finger or other

 pointing device
 Possibility of enlarging forms and/or fonts
 Navigation consistency

2515.1 Quality Attributes for Test Analysts

Book_samlet.indb 251 2/19/08 8:15:14 PM

A number of standards cover various aspects of accessibility aspects, in-
cluding Web Contents Accessibility Guidelines from the World Wide Web
Consortium (W3C), an international consortium working on Web standards.

5.1.2.4 Establishing Usability Requirements
Like all other requirements, usability requirements should be expressed as
explicitly as possible. Usability requirements can be derived from usability
assessments (usually called by the very misleading name usability test, and
also known as formative evaluation).

Usability assessment is a requirements elicitation technique—and it
should be performed early, not on the finished product.

A usability assessment is performed by representative users who are given
tasks to complete on a prototype of the products. This can be hand-drawn
sketches of forms or mock-ups of the forms made in, for example, PowerPoint.
Any thoughts and difficulties the users have in completing the tasks are re-
corded. This is best done if the users can be made to “think aloud” during the
assessment.

After the usability assessment the comments are analyzed; the prototype
may be changed and assessed again; and finally the usability requirements
are derived.

Usability assessments can be done very primitively by review of proto-
types and storyboards, or very sophisticatedly in purpose-built usability labs
with two-way mirrors and video equipment.

People with different skills, for example, specialists in sociology, psychology,
and ergonomics, may participate in the elicitation and documentation of us-
ability requirements, specific standards, or special considerations to be made.

The usability requirements must be measurable. A requirement like this:

The user interface shall be nice to look at.

is seen all too often, but it is no good.

Here are a few examples of measurable usability requirements:
{UR.518} At least 95% of the primary users of the product shall answer

either “very good” or “good,” when asked about their opinion of the look
and feel of the user interface in the survey to be carried out two months after
deployment.

{UR.523} At least 80% of estate agents with a minimum of five years
experience shall be able to complete the task described in the use case {UC.78}
in less than 30 minutes after 20 minutes instruction.

{UR.542} All push buttons shall be placed right aligned at the bottom of
the forms.

{UR.557} All forms shall have an online help facility describing the pur-
pose and the syntax of all the fields on the form.

Testing of Software Characteristics252

Book_samlet.indb 252 2/19/08 8:15:14 PM

{UR.516} All tasks described in Section 4.1 shall be completable with a
maximum of five clicks.

Note that these usability requirements are nonfunctional, or functionality-
sustaining. They cannot be expressed independently of functionality but must
refer to the functionality to which they apply.

5.1.2.5 Testing Usability
Usability may be tested in various ways during the development life cycle.
Techniques to use may be:

 Static tests
 Verification and validation of the implementation
 Surveys and questionnaires

Static tests can be performed as reviews and inspections of usability speci-
fications. These may include so-called heuristic evaluation, where the design
of the user interface is verified against recognized usability principles. Static
testing finds defects early and is hence very cost-effective, not least of all for us-
ability where mistakes in the user interface may be very expensive to remedy
late in the development life cycle. Static testing is further discussed in Chapter 6.

The verification and validation of the implementation of the usability
requirements are performed on the working system. Here the focus is on the
usability requirements associated with, but not identical to, the functional
requirements. Test procedures, use cases, or scenarios may be used to express
what is to be done, whereas the actual usability testing is about whether the
usability requirements are fulfilled.

The usability requirements may be in the form of requirements stated
in natural languages, as the examples above show, but they may also be ex-
pressed in terms of prototypes or drawings. These may be more difficult to test
against, but it is important to verify that an implementation is in fact reflect-
ing the prototype agreed on by the future users.

In this form of usability testing it is particularly important that the test
environment reflects the operational environment, not least of all in terms of
space, light, noise, and other disturbing factors.

Coverage may be measured using the usability requirements as the cover-
age element.

The ultimate validation is the user acceptance test where the finished
product should be accepted by the users as being the system that fulfills their
requirements, expectations, and needs. Obviously great care should be taken
all along the development to ensure that acceptance may actually be the re-
sults of the acceptance testing. Serious defects and failures identified at this
point of time may turn out to be very expensive.

2535.1 Quality Attributes for Test Analysts

Book_samlet.indb 253 2/19/08 8:15:15 PM

Other tests like syntax tests of input fields and tests of messages to us-
ers may be combined with usability, even though they (in a strictly ISO
9126-speaking sense) belong to functional testing.

Not all requirements can be tested in a static and dynamic testing. Surveys
and questionnaires may be used where subjective measures, such as the per-
centage of representative future users who like or dislike the user interface,
are needed.

The questions must be worded to reflect what we want to know about the
users’ feelings towards the product. We can make our own, or we may use
standardized surveys such as SUMI or WAMMI.

SUMI, The Software Usability Measurement Inventory, is a tested and proven
method of measuring software quality from the end user’s point of view. It
can assist with the detection of usability flaws before a product is shipped,
and it is backed by an extensive reference database embedded in an effective
analysis and report-generation tool. SUMI provides concrete measurements of
usability, and these may be used as inspiration for usability requirements or
completion criteria. See more on http://sumi.ucc.ie.

WAMMI is a Web analytics service to help Web site owners accomplish
their business goals by measuring and tracking user reactions to Web site ease
of use. See more on http://www.wammi.com.

5.2 Quality Attributes for Technical
 Test Analysts
As important as the functionality of a product may be, it cannot stand alone.
The functionality will always behave and present itself in certain ways. This
is what we call the nonfunctional or functionality-sustaining attributes of the
product.

Historically these attributes have been neglected when requirements have
been specified, and testers have “tested” some of the nonfunctional quality
attributes based on their experience. This testing was very often just a negative
test: The basic idea was to get the product to fail to see how much it could
cope with without knowing what the needs and expectations were.

This ought not to happen. Nonfunctional requirements should be defined
for all the functionality for the product in the requirements specification.

There are many suggestions for what nonfunctional requirements should
cover.

Some classics standards, which have been around for quite some time, are
listed here with the quality attributes they include:

Testing of Software Characteristics254

Book_samlet.indb 254 2/19/08 8:15:15 PM

ISO 9126 Functionality, reliability, usability,
 efficiency, maintainability, portability

McCall and Matsumoto Integrity, correctness, reliability, usability,
 efficiency, maintainability, testability,

 flexibility, portability, interoperability,
 reusability

IEEE 830 Performance, reliability, availability,
 security, maintainability, portability

ESA PSS-05 Performance, documentation, quality,
 safety, reliability, maintainability

A working group under British Computer Society is currently working
on a new standard for nonfunctional quality attributes. This includes the
following:

BCS working group memory management, performance/
 stress, procedure, reliability, security,
 interoperability, usability, portability,
 compatibility, maintainability, recovery,
 installability, configuration, disaster
 recovery, conversion

More information about this work can be found at:
www.testingstandards.co.uk

The nonfunctional requirement types covered in this section are:

 Reliability
 Efficiency
 Maintainability
 Portability

in accordance with ISO 9126. Usability testing is covered in the previous
section, since it is of interest to test analysts.

Furthermore the technical aspects of security testing are covered here.

2555.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 255 2/19/08 8:15:15 PM

5.2.1 Technical Testing in General
In principle the nonfunctional testing is identical to the functional testing;
it should be based on requirements and needs and use the test case design
techniques discussed in Chapter 4.

However, testers can, and should, help developers and analysts define
these requirements from the beginning; and we can review the requirements
to ensure that they are comprehensive and testable.

It is important that the nonfunctional requirements are measurable and
testable. This is, however, not always easy, at least not in the beginning. All
too many nonfunctional requirements are expressed using words like “good,”
“fast,” or “most of the time.”

To overcome this it must be remembered that each nonfunctional require-
ment must be expressed using a scale, a specific goal, and possibly also accept-
able limits. The circumstances under which the goal is to be achieved must
also be specified. Further information, for example, stretch, achieved records,
and future goal, could also be given to put the specified goal in perspective.

Let’s look at an example. First a typical way of expressing a performance
expectation:

“Reports must not take too long to be created.”
This should make you wonder which reports we are talking about, what

“too long” is, and if this is a general expectation no matter the circumstances.
The requirements could be reworded to:
“[P.65] The creation of a full report of all the clients as specified in Req.

[F.89] shall not take more than 15 minutes if launched between 8:00 and
16:00 on normal weekdays.”

This is much better. Now we know which report we are talking about,
namely the one specified in the functional requirement [F.89]; we know
that 15 minutes is acceptable, and we know that this is the expectation for
a normal working day. The requirement could be even more specific, but the
improvement in testability is already significant.

It can become a sport to dig behind imprecise nonfunctional expectations
and find out what the real need is.

Apart from assisting during the requirements specification, technical
testers must test the actual implementation of the nonfunctional require-
ments. This can be done at different testing levels depending on the types of
requirements.

The coverage for the nonfunctional testing can be measured using non-
functional requirements as the coverage element.

Testing of Software Characteristics256

Book_samlet.indb 256 2/19/08 8:15:15 PM

The testing of the nonfunctional quality attributes must be executed in
a realistic environment reflecting the specified circumstances. This can be in
terms of, for example, hardware, network, other systems, timing, place, load
patterns, and operational profiles.

An operational profile is a description of:

 How many
 Of which user groups
 Will use what parts of the system
 When
 How much and/or how often

If care is not taken to ensure realistic circumstances the testing may be a
complete waste of time and, even worse, create a false sense of confidence in
the product.

5.2.1.1 Random Input Technique
In order to perform much of the technical testing to be discussed below, we
have to set up test cases matching the operational profiles we are going to test
and measure under. This means that in principle we have to define the same
statistical distributions of input as those defined in the requirements.

The random input technique can assist in generating input data based on
a model of the input domain that defines all possible input values and their
operational distribution.

Random input is not “out of the blue” random!

Random input follows the input distribution; the input values are
constrained and guided by this.

Expected input patterns can be estimated or may be known before deploy-
ment, and that knowledge can be used in testing. There are many possible
distributions, but the most common ones are the uniform distribution and
the normal distribution.

In uniform distribution the
probability of each value in the
value domain is equal.

0

0,2

0,4

0,6

0,8

1

1,2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

2575.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 257 2/19/08 8:15:16 PM

The outcome of throwing a die follows an equal distribution. The probability
of getting a 6 is the same as that of getting any of the other values.

In the normal distribution there is an
average value, which we have a high
probability of getting. The further away
from the average a value is, the lower is
the possibility of getting that value.

This is, for example, the case for the height of men in their forties. Most of
these men are 1.80 meters. Only a few men stand 2 meters tall, and likewise
only few reach no more than 1.6 meters.

For random testing we select input values for the test cases randomly
from the input domain according to the input distribution.

If the distribution is unknown, we can always use a uniform distribution.
The pitfall of random input generation is that it can be very cumbersome

to determine what the expected results of the test cases are. Random input
is mainly interesting when the objective is to get the system to crash. A large
number of test cases can be generated quite quickly, and long sequences of
input can be run.

The expected result and the actual result are, however, usually not that
important when we are performing reliability or performance testing.

The benefit of random input is that it is very cost-effective, especially if
automated; the input to the test cases is cheap to develop (though the ex-
pected results may not be), the input requires little maintenance, and it gets
around in the system in a trustworthy way.

Another benefit is that random input testing may find “unexpected”
combinations and sequences and may detect initialization problems. It usu-
ally gives high code coverage. If automated it is a very persistent testing, and
long test runs may also find resource problems, such as memory leaks or list
overflows.

5.2.2 Technical Security Testing
In security testing we test the requirements or needs concerned with the ability
to prevent unintended access and resist deliberate attacks intended to gain
unauthorized access to confidential information, or to make unauthorized
modifications to information or to the program so as to provide the attacker
with some advantage or so as to deny service to legitimate users.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

-4

-3
,5 -3

-2
,5 -2

-1
,5 -1

-0
,5 0

0,
5 1

1,
5 2

2,
5 3

3,
5 4

Testing of Software Characteristics258

Book_samlet.indb 258 2/19/08 8:15:16 PM

Detailed security attributes may be:

 Activity auditability: Log facilities for activities, actors, and so on
 Accessability: Access control mechanisms
 Self-protectiveness: Ability to resist deliberate attempts to violate
 access control mechanisms
 Confinement: Ability to avoid accidental unauthorized access to
 facilities outside the application
 Protectiveness: Ability to resist deliberate attempts to access
 unauthorized facilities outside the application
 Data integrity: Protection against deliberate damage of data
 Data privacy: Protection of data against unauthorized access

Security testing can be split into functional security testing and technical
security testing. In functional security testing we test the fulfillment of security
attributes that can be explicitly expressed in requirements. In technical security
testing we take on a much broader perspective.

It is impossible to express all technical security issues as testable require-
ments; there are simply too many ways in which things can go wrong and too
many ways in which people with dishonest intentions can try to get to our
valuables.

The valuables we have in software systems are data, both in the form of
data and in the form of running code. This is what we need to protect, and
technical security testing is about finding out if the system is able to with-
stand threads to the data.

Data can be jeopardized in a number of ways, typically:

 Read to obtain other valuables (e.g., credit card numbers or sensitive
 data)

 Copied for use without paying (e.g., music or entire products)
 Added for harmful effects (e.g., viruses or access requests)
 Changed (e.g., sensitive information or code instructions)
 Deleted (e.g., data)

The difficulty with technical security testing is that most of the testing
techniques discussed in Chapter 4 usually have very little probability of find-
ing security defects. The majority of the security defects are not defects in the
sense that the product does not fulfill states requirements or expectations
in a narrow sense. The problems arise from the product having or allowing
functionality that is not wanted by the future users and hence not specified,
but implemented to ease the implementation without regard to the possible
security side effect such an implementation might have.

2595.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 259 2/19/08 8:15:17 PM

In a product protected by user identities and passwords, the passwords are
normally stored in an encrypted way. As long as a user is logged on, how-
ever, the password is stored in an unencrypted way in order to obtain a better
performance.

Already at the design of the system care should be taken to reduce the
risks of these things happening. Designers need to take on the most pessimistic
and malicious minds they possibly can. This is not as easy as it sounds. Most
people trust their neighbor to a large extent and find it difficult to think of
ways in which they themselves may be cheated or threatened. This is why
some professional hackers who have changed their ways may be employed as
security consultants.

Note that there may be conflicts between security requirements and per-
formance requirements, in the sense that higher security may cause lower
performance.

Testers can perform static tests on design and code implementation to
look for vulnerabilities in the system at an early stage. Things to look out for
may include:

 Use of temporary storage of sensitive data or information supposed
 to be kept secret (for example, passwords or encryption keys)

 Possible buffer overflows, both in input and internal data handling
 Exposure of sensitive data for example over networks
 Acceptance of unvalidated data either via a user interface or an
 external interface

The list is by no means exhaustive.
A special security issue is logical bombs or so-called Easter eggs, where

harmful code has been written into the components during development.
Static testing is the only technique that may find this.

Examples of logical bombs may be:
An IF clause that is only true on specific data, where data might be erased.
An IF clause that is only true for a specific bank account number, to which an
extra amount of money is debited.

The testing technique of attacks, discussed in Section 4.4.4 is very useful
for technical security testing. Checklists of effective attacks should be kept
up-to-date.

A more systematic approach perhaps is one supported by tools. A pro-
file of the product in term of versions of operating software and middleware,
identifications of developers and users, and details about internal networks
is created by the use of a tool. Based on this, tools can scan the product for

Testing of Software Characteristics260

Book_samlet.indb 260 2/19/08 8:15:17 PM

No faults
= 100% reliability

Many faults
= x% reliability

No faults
= 100% reliability

Many faults
= x% reliability

known vulnerabilities, and this information can be used to develop targeted
attack plans.

It is not possible to measure coverage for technical security testing, except
in the form of items on checklists covered by a test.

5.2.3 Reliability Testing
Reliability is the probability that software will not cause the failure of a system
for a specified time under specified conditions.

Concerning reliability we have got to be realistic: It is impossible to pro-
duce 100% fault-free products!

Functional testing and reliability testing are connected. The goal of func-
tional testing is to obtain the highest possible reliability of the product within
the given limits. The goal of reliability testing is to valuate the reliability we
have obtained.

The test object is the complete product. The reliability testing should be
based on operational profiles specified for the product, and reliability goals
expressed in requirements. This is not always easy or efficient to set up. In fact
it is sometimes impossible to perform reliability testing before the product is
in operation. Usually this is acceptable, and the reliability test will be part of
the final acceptance test.

A specific reliability may be used as a test completion or test exit criterion
for the system testing, allowing for earlier reliability testing.

During reliability testing it is essential to collect measurements for the
evaluation. Failures are registered when they appear “spontaneously,” and
they must be categorized and countable. We must also collect other measure-
ments as appropriate, such as time and number of transactions.

The test must go on until “reliable” data has been obtained. This can take
quite a while, certainly days and maybe even weeks or months.

The ISO 9126 standard breaks the reliability attributes down into a number
of subattributes. There are:

 Maturity
 Fault tolerance (robustness)
 Recoverability

2615.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 261 2/19/08 8:15:18 PM

Reliability Growth Curve Reflecting Out-of Control Process

Test Time

Fa
ilu

re
 In

te
ns

ity

0

10

20

30

40

50

60

70
Reliability Goal

The standard explains each of them. These explanations are primarily in-
tended as inspiration for nonfunctional requirements. They can also be used
as checklists for static testing of reliability requirements, design, and imple-
mentation, and as inspiration for checklist-based reliability testing.

5.2.3.1 Maturity Testing
Maturity is the frequency of failures as a result of faults in the software.

A product’s expected maturity is often expressed in terms of

 Mean time between failures (MTBF)
 Failures per test hour
 Failures per production time (typically months)
 Failures per number of transactions

The metrics may be further detailed by categorizing the accepted types of
failures, for example, by severity.

A few examples of reliability requirements are:
[34] The MTBF for the product shall be more than one month on average in
the first year of production.
[72] The product shall have no more than two failures of severity 1 reported
in the first six months of production.
[281] The product shall have less than three failures per 10,000 transactions.

For testing completion criteria we may have reliability goals like:
The testing can stop when less than one failure of severity 1 has been found
during 20 hours of testing on average over at least two weeks of testing.

The results of the reliability testing can be graphic presentations of the
measurements using a reliability growth model.

The following figure shows a reliability growth curve for a product where
the reliability is getting better, but not achieving its goal.

Source:
www.testingstandards.co.uk

Testing of Software Characteristics262

Book_samlet.indb 262 2/19/08 8:15:18 PM

Another way to present reliability data is in an S-curve. Here the total
number of failures found over time is plotted against time.

The figure shows an S-curve for the total number of failures for each test
week. The expected number of failures after 10 weeks’ testing is 100. So far it
looks as if the pattern of failures found follows the expectations.

S-curves are often used to determine when to stop the test. They are also
useful for predicting when a reliability level will be reached. Furthermore,
S-curves may be used to demonstrate the impact on reliability of a decision to
deliver the software NOW!

In cases where late or complete reliability testing is not acceptable we
must either reword the requirements, use statistical proof, or use analysis.

Reliability evaluation or reliability estimation is an activity where we
analyze the fault-finding curves we have produced. We extrapolate from the
curves and predict how many defects are left in the product.

Another way to predict remaining defects is to use estimation models
based on the structure of the program, for example, knowledge of the size,
the complexity, and the data transactions.

5.2.3.2 Robustness Testing
Fault tolerance or robustness is the product’s ability to maintain a specified
level of performance in the presence of software defects or infringement of a
specified interface.

This may cover the product’s:

 Containment of defects to specified parts of the system
 Reactions to failures of a given severity
 Self-monitoring of the operations and self-identification of defects
 Ability to allow specified work to continue after a failure of specified

 severity for specified parts of the system under specified conditions
 Loss of specified operations (functionality requirement or set of

 functionality requirements) in case of failure of specified severities
 in specified periods of time for specified parts of the system

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

2635.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 263 2/19/08 8:15:19 PM

 Loss of specified data in case of failure of specified severities in
 specified periods of time for specified parts of the system

The failures to consider in technical robustness testing are those forced on
the product from external sources. Failures due to internal defects should be
handled in the functional testing.

Failures from external sources could, for example, be caused by lack of
external storage capacity, external data storage not found, external services
not available, or lack of memory.

Robustness testing can, like the other technical tests, start at the require-
ments level, with testers reviewing robustness requirements.

Even more important is review of design. Design can be made more or
less defensive, that is more or less robust to external circumstances. A simple,
though often overlooked way to make systems more robust is to check the
return code of all system routine calls and take action in the code when system
call is unsuccessful.

Lack of memory may be due to memory leaks. Possible memory leaks
could be found using dynamic analysis, for example, during component testing.

Testing robustness in system testing and/or acceptance testing may
require the use of simulators or other tools to expose the product to external
problems otherwise difficult to produce.

5.2.3.3 Recoverability Testing
Recoverability is the product’s ability to reestablish its required level of perfor-
mance and recover the data directly affected after a failure.

This may cover aspects like:

 Downtime after a failure of specified severities in specified periods
 of time for specified parts of the system

 Uptime during specified periods of time for specified parts of the
 system over a specified period of time

 Downtime during specified periods of time for specified parts of the
 system over a specified period of time

 Time to reestablish consistent data in case of failure causing
 inconsistent data
 Built-in backup facilities
 Need for duplication (standby machine)
 Redundancy in the software system
 Reporting of effects of a crash
 “Advice” in connection with restart

Testing of Software Characteristics264

Book_samlet.indb 264 2/19/08 8:15:19 PM

Downtime after a failure, including time to reestablish data, is often
measured as mean time to repair (MTTR). This is closely linked to analyza-
bility, discussed in Section 5.2.5.

5.2.4 Efficiency Testing
In efficiency testing we test the requirements or needs concerned with the
product’s ability to provide appropriate performance, relative to the amount
of resources used, under stated conditions.

The ISO 9126 standard breaks the efficiency attributes down into the sub-
attributes:

 Time behavior (performance)
 Resource utilization

The standard also explains each of these. The explanations are primarily
intended as inspiration for related nonfunctional requirements. They can also
be used as checklists for static testing of efficiency requirements, design, and
implementation, and as inspiration for checklist-based efficiency testing.

5.2.4.1 Performance Testing
Time behavior or performance consists of the expectations towards the product’s
ability to provide appropriate response and processing time and throughput
rates when performing its functions under stated conditions.

In short, performance is concerned with how fast specified parts of the
functionality are. This may cover requirements concerning:

 The response time for specified online tasks under specified
 conditions
 The elapsed time for transfer of specified data under specified cir-

 cumstances
 The internal processing time (for example, in CPU cycles) for
 specified tasks under specified conditions
 The elapsed processing time for specified batch tasks under specified

 conditions

Expectations towards performance must be expressed in performance
requirements.

[P.65] The creation of a full report of all the clients as specified in Req. {F.89}
shall not take more than 15 minutes if launched between 8:00 and 16:00 on
normal weekdays.
[P.72] The creation of a full report of all the clients as specified in Req. {F.89}
shall not use more than 35% of the CPU time.

2655.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 265 2/19/08 8:15:20 PM

Performance testing can be very expensive and time-consuming to perform.
It can be especially costly to establish the correct environment to test in.

It is important to be absolutely sure that the environment and conditions
are correctly specified in performance requirements and correctly established
for the performance testing, not least in terms of hardware, operating system,
middleware, and concurrent use patterns or operational profiles.

This is something that should be specified in connection with the require-
ments specification in order for the performance requirements and hence the
performance test to be reliable.

Many tools support test of performance. The tools can report on response
times and execution times, for example, for database lookups or data transfer,
and they can identify bottlenecks in the functions, either internally in the
product and/or in the network for Web-based products. Tools are discussed in
Chapter 9.

In principle performance test verifies that performance requirements are
fulfilled. The coverage item is performance requirements, and the coverage is
hence measured as the percentage of all the performance requirements tested
in a test. As for all testing, failures must be reported, and retest and regression
test must be performed after corrections.

Load Testing
Load testing is a special subtype of performance testing concerned with the
product’s behavior under specified load conditions.

Load has two aspects, namely:

 Multiuser with ordinary realistic numbers of users
 Large, though still realistic number (volume) of concurrent users

The loads that the product is expected to be able to handle and the appli-
cable response times must be expressed in load requirements.

We need to think about load early on during requirements specification.
It is important to strike a balance in the load requirements so that they are
within reason, but still take the future into account.

Load testing can be quite expensive, and it is important not to go over-
board. Sometimes we may have to question the requirements: Are they
realistic or “wearing both belt and braces?” In order to keep the load testing
expenses under control we should use risk analysis to prioritize and plan the
testing tasks.

Tools may be used to generate and/or simulate loads.
Load testing and performance testing are sometimes related in the sense

that the load can be part of the condition specifications for performance
requirements.

Testing of Software Characteristics266

Book_samlet.indb 266 2/19/08 8:15:20 PM

Stress Testing
Stress is an expression of the product’s capability for handling extreme situ-
ations.

When planning requirements for stress handling it is a good idea to
remember Murphy’s law:

“If anything can go wrong, it will.”
or
“The unthinkable sometimes happens anyway.”
In stress-handling requirements we are confronting the risk of the system

not being able to handle extreme situations. We are dealing with risks con-
cerning people, money, data, and the environment, risks that will materialize
if the system can’t cope in a stress situation.

[87] The system shall not crash but issue an error message and stop execution
after acknowledgment, if too much data is loaded in the data load described
in requirement [DL931].

Stress handling is closely related to other nonfunctional areas. The re-
lationship between reliability and stress is that stress looks at reliability in
extreme situations. With respect to usability, stress is about handling failures
with grace, so that the user is not left in the dark about what is happening.
Stress in connection with load is concerned with peak load over a short span
of time.

When working with stress-related requirements we will have to think
about what can go wrong. For data this could be in situations with too much
data, too little data, or faulty data. For usage it could be too many simultaneous
users, extended use (same operation “umpteen” times, system to run without
restart for many hours/days/months), or maybe dropping the system or part of
the system on the floor. External events such as power failure may also cause
stress in the system.

Stress-handling is particularly important for Web applications, such as
e-products and e-business; in telecommunication, safety- and security-critical
systems; and real-time systems.

Stress on a system can to a large extent be handled by defensive program-
ming. This means that stress testing can start early with review of design and
code.

Stress testing should have high “product” coverage. Even if some stress
prevention works in one place it may not work in another part of the system.

Stress testing should be imaginative, but on the other hand it should not
go overboard. When planning the stress test we need to make a risk analysis.
Even the unthinkable may happen too rarely to warrant a test.

2675.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 267 2/19/08 8:15:20 PM

Scalability Testing
Scalability is the product’s ability to meet future efficiency requirements.
This is not really a test, since naturally we cannot perform it against existing
requirements.

This technique is more a scalability assessment; what we are aiming at is
finding out how the product reacts to growth in, for example, number of users
or amounts in data.

The product’s ability to keep its performance requirements may also be
monitored on an ongoing basis during deployment to provide us with the op-
portunity to take action before the product may break under the load.

5.2.4.2 Resource Utilization Testing
Resource utilization is the expectations towards the product’s use of appro-
priate amounts of resources when the software performs its functions, under
stated conditions.

In short, resource utilization has got to do with what is used and what is
needed. This may cover requirements concerning:

 The amount of CPU resources used for specified functions
 The amount of internal memory resources used for specified
 functions
 The amount of external memory resources used for specified
 functions
 Levels of memory leakage
 The presence, appropriateness, and availability of human resources,

 peripherals, external software, various material

In modern systems memory is rarely a problem, but it may be in, for
example, games and also in real-time embedded systems. In the latter, memory
usage, also referred to as memory footprint, may be the object of precise speci-
fication and thorough testing.

5.2.5 Maintainability Testing
In maintainability testing we test the requirements or needs concerned with
the product’s ability to be analyzed and modified. Modifications may include
corrections of defects, improvements or adaptations of the software to changes
in the environment, and enhancements in requirements and functional speci-
fications.

The ISO 9126 standard breaks the efficiency attributes down into the sub-
attributes:

 Analyzability
 Changeability

Testing of Software Characteristics268

Book_samlet.indb 268 2/19/08 8:15:21 PM

 Stability
 Testability

The standard also explains each of these. The explanations are primarily
again intended as inspiration for related nonfunctional requirements and
they may be used for checklists.

Maintainability testing can be performed as static testing, where the
structure, complexity, and other attributes of the code and the documentation
are reviewed or undergoing inspections based on the pertaining maintenance
requirements. Static analysis of the code may also be used to ensure its adher-
ence to coding standards and to obtain measurements, such as complexity
measures.

The maintainability test may also be performed dynamically in the sense
that specified maintenance procedures are executed and compared to pertain-
ing requirements. What is measured in this type of maintenance testing is
typically the effort involved in the maintenance activities.

The dynamic maintenance testing may be combined with other tests, typ-
ically functional testing, where the failures found and the underlying defects
to be corrected may serve as those the maintainability procedures are tested
with.

5.2.5.1 Analyzability Testing
Analyzability is the ability of maintainers to identify deficiencies, diagnose
the cause of failures, and identify areas requiring modification to implement
required changes. A way to measure analyzability is MTTR, mean time to repair.

Analyzability may cover aspects like:

 Understandability: Making the design documentation, including the
 source code, understood by maintainers

 Design standard compliance: Adherence to defined design standards
 Coding standard compliance: Adherence to defined coding standards
 Diagnosability: Presence and nature of diagnostic functions in the code
 Traceability: Presence of traces between elements, for example,
 between requirements and test cases, and requirements and design

 and code
 Technical manual helpfulness: Nature of any technical manual or

 specification

2695.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 269 2/19/08 8:15:21 PM

5.2.5.2 Changeability Testing
Changeability is the capability for implementation of a specified modification
in the product.

Changeability may cover aspects like:

 Modularity: The structure of the software
 Code change efficiency: Capability for implementing required changes
 Documentation change efficiency: Capability for documenting
 implemented changes

5.2.5.3 Stability Testing
Stability is the capability of the product to avoid unexpected effects from
modifications of the software, that is, to the risk of unexpected effects from
modifications.

Stability may cover aspects like:

 Data cohesion: Usage of data structures
 Refailure rate: Pattern of new failures introduced as an effect of
 implementation of required changes

In other words, stability has got to do with the structure of the software
and, not least, of the data. We might get an impression of the stability of the
product during regression testing after defect correction.

Experience shows that in general 50% of the original number of defects
remain in a product after defects are corrected. These are distributed like this:

 Original defects remaining 20%
 Existing defects revealed after correction of others 10%
 New defects introduced during defect correction 20%

Stability has got to do with new defects introduced during defect correc-
tion, that is, how likely is that developers or maintenance staff accidentally
make new mistakes and hence place new defects in the product when they are
in fact engaged in correcting identified defects.

It is of course important for an organization to get its own measurements
for the rate of new defect introduction and also for the effectiveness of defect
correction.

5.2.5.4 Testability Testing
Testability is the capability of validating the modified system, that is, how
easy it is to perform testing of changes, either new tests or confirmation test,
and how easy it is to perform regression testing.

This is influenced both by the structure of the product itself and by the

Testing of Software Characteristics270

Book_samlet.indb 270 2/19/08 8:15:21 PM

structure of the test specification and other testware.
Testability is also influenced by how configuration management is per-

formed. The better the control over the testware, not least the test data, and
the product, and the documentation of the relationships between product ver-
sions and testware versions is, the better is the testability.

5.2.6 Portability Testing
In portability testing we test the requirements or needs concerned with the prod-
uct’s ability to be transferred into its intended environment. The environment
may include the organization in which the product is used and the hardware,
software, and network environment.

The porting may be the first porting from a development or test environment
into a deployment environment, or it may be the porting from one deployment
environment to another at a later point in time.

Portability is primarily an issue for software products or software subsystems,
not so much for, for example, hardware subsystems. These are usually part of the
environment into which the software subsystem or product is being ported.

The ISO 9126 standard breaks the portability attributes down into the sub-
attributes:

 Installability
 Coexistence
 Adaptability
 Replaceability

The standard also explains each of these. The explanations are again
primarily intended as inspiration for related nonfunctional requirements and
for checklists.

5.2.6.1 Installability Testing
Installability is the capability of installing the product in a specified environment.

Installability may cover aspects like:

 Space demand: Temporary space to be used during installation of
 the software in a specified environment.

 Checking prerequisites: Facilities to ensure that the target environment
 is meeting the demands of the product, for example, in terms of ope-

 rating system, hardware, and middleware.
 Installation procedures: Existence and understandability of installation
 aids such as general or specific installation scripts, installation manuals,
 or wizards. This may also include requirements concerning the time

 and effort to be spent on the installation task.
 Completeness: Facilities for checking that an installation is complete,

2715.2 Quality Attributes for Technical Test Analysts

Book_samlet.indb 271 2/19/08 8:15:21 PM

 for example, in terms of checklists from configuration management
 Installation interruption: Possibility of interrupting an installation.
 and rolling any work done back to leave the environment unchanged
 Customization: The capability of setting or changing parameters at

 installation time in a specified environment.
 Initialization: The capability of setting up initial information at instal-

 lation time, both internal and external in a specified environment.
 Deinstallation: Facilities for removing the product partly (downgrading)

 or completely from the environment.

5.2.6.2 Coexistence Testing
Coexistence is the software product’s capability to coexist with other independent
software products in a common environment sharing common resources.
Today with powerful servers, PCs, and portables and with more and more
functionality in everything being controlled by software, the coexistence of
systems is a growing issue.

As cars began to have more and more software installed to control the func-
tions of the car, a common joke was that the windshield wipers would only
work if the passenger in the right backseat weighed less than 80 kilos.

This example may seem far out, but failed coexistence may have the
strangest effects. Such failures may be caused by systems using the same area
of memory and thus getting corrupted data, or by systems affecting each other’s
performance.

Coexistence can be very difficult to specify, since we don’t always know
into which environment our software product is being placed. Precautions can
be taken in the form of resource utilization requirements, which may then be
compared to resource utilization of any other systems our system is going to
coexist with, and the available resources in the target environment.

Coexistence testing can also be very difficult to perform, since it is usually
impossible to establish correct test environments for this. Often coexistence is
tested after acceptance testing of the product and the installation in the target
environment. This is obviously risky, and the decision to do so should be made
based on a risk analysis.

5.2.6.3 Adaptability
Adaptability is the capability of the software product to be adapted to dif-
ferent specified environments without applying actions or means other than
those provided for this purpose for the system.

Products and systems are rarely permanent and unchangeable these days
and it will often happen that a system our system interfaces with will have to

Testing of Software Characteristics272

Book_samlet.indb 272 2/19/08 8:15:22 PM

be replaced by a newer version or a completely different system. In this case
our system will have to be adapted to interface with the new system in the
environment instead of with the old one.

Ease of changing interfacing systems may be achieved by using commu-
nication standards, such as HTML, or by constructing the software in such a
way that it can itself detect and adjust to external communication needs.

Adaptability is primarily of interest to organizations developing commer-
cial off-the-shelf (COTS) products or systems of systems.

Adaptability may cover aspects like:

 Hardware dependency: Dependence on specific hardware for the system’s
 adaptation to a different specified environment

 Software dependency: Dependence on specific external software for the
 system’s adaptation to a different specified environment

 Representation dependency: Dependence on specific data representation
 for the system’s adaptation to a different specified environment

	 Standard language conformance: Conformance to the formal standard
 version of a programming language

 Dependency encapsulation: The isolation of dependent code from inde-
 pendent code

 Text convertability: The capability for converting text to fit a specified
 environment

5.2.6.4 Replaceability Testing
Replaceability is the capability of the product to be used in place of another
specified product for the same purpose in the same environment.

This is the opposite of adaptability, because in this case our system replaces
an old one. The issues for adaptability therefore also apply for replaceability.
There is also a certain overlap with installability.

Furthermore replaceability may cover aspects like:

 Data loadability: Facilities for loading existing data into permanent
 storage in our system
 Data convertability: Facilities for converting existing data to fit into
 our system

Questions
1. What are the quality attributes defined by ISO 9126?
2. What are the subattributes under functionality?
3. What are the main concerns for suitability requirements and
 testing?
4. What do we need to be aware of concerning accuracy testing?

273Questions

Book_samlet.indb 273 2/19/08 8:15:22 PM

5. What does interoperability mean?
6. Why do we need to think about security?
7. What is a user group?
8. What are the subattributes for usability?
9. For whom is accessibility especially important?
10. How may some usability requirements be found?
11. What is the coverage element for usability testing?
12. What is SUMI?
13. Why is nonfunctional testing traditionally a focus point for
 testing?
14. What are sources for nonfunctional attributes other than
 ISO 9126?
15. How must nonfunctional requirements be expressed?
16. What is an operational profile?
17. What is random input creation?
18. How can random input be used in nonfunctional testing?
19. How may data be jeopardized?
20. Which other nonfunctional attribute may security affect?
21. What is reliability?
22. How is reliability testing different from other nonfunctional
 testing?
23. For how long must reliability testing go on?
24. How can reliability estimation be performed?
25. What are the reliability subattributes?
26. What will be defined for testing of these subattributes to be possible?
27. What are the subattributes for efficiency?
28. What is important for efficiency testing to be reliable?
29. What are load requirements about?
30. What is stress for a product?
31. What is scalability about?
32. What resources may a product use?
33. What are the subattributes for maintainability?
34. What is MTTR?
35. Why are not all defects removed when a product is returned for
 confirmation testing and regression testing?
36. What is portability?
37. What are the subattributes for portability?
38. What may the problems with coexistence of systems be?
39. To which other subattributes does replaceability relate?
40. How can adaptability be enhanced/supported?

Testing of Software Characteristics274

Book_samlet.indb 274 2/19/08 8:15:22 PM

6
CHAPTER

Contents

6.1 General Principles
 for Static Testing

6.2 Static Testing Types

6.3 Static Testing in the
 Life Cycle

6.4 Introducing Static
 Testing

Reviews (Static Testing)

Static testing—or reviewing – in the sense of having a second
pair of eyes looking at something one has produced has prob-

ably been practiced since the first cavemen painted the walls of
the caves.

In software the techniques were formally introduced in the
1970s. Since then a large volume of articles and a few books and
comprehensive studies about static testing have been published.

Despite this there is still some confusion about terminology.
Are we talking about reviews or static testing?

In this book the term “static testing” is chosen as the overall
term for the testing that is not dynamic (i.e., the testing where
the product is not executed (and hence static)). However, beware;
the syllabus uses the overall term of “review,” even though one of
the types is in itself called review.

6.1 General Principles for Static Testing
6.1.1 History of Static Testing
In the software industry static testing was first officially intro-
duced by Mr. Fagan in the early 1970s. He wrote: “We had a num-
ber of projects coming in late in a number of departments. I knew
I had to take some action to reverse this trend, so I worked with
several of my colleagues to perform some analyses of what was
happening, and we found that there were defects in some of our
designs that were causing the delays. In some cases we were 12
weeks behind schedule and way over budget. So we designed and
implemented an organized process to search for design defects
at a very early point in the development process and eliminated
them before they could become a problem and cause delays and
budget overruns.” Static testing as we know it today was born.

275

Book_samlet.indb 275 2/19/08 8:15:22 PM

Static testing appears in the maturity models CMMI® and ISO15504
(SPICE) and also in ISO9000. In CMMI® static testing is represented at level
2 and 3 in the validation and verification process areas. The maturity models
CMMI® and ISO 15504 are discussed in more detail in Chapter 8.

6.1.2 Static Testing Definition
Dynamic testing is testing of software where the object under testing, the
code, is being executed on a computer. Dynamic testing requires something
that is executable and a more or less elaborate test environment. Dynamic
testing finds failures, that is, situations where the object under testing does
not behave as expected.

In contrast to this, static testing is testing—or quality assurance—where
the object under testing is not being executed on a computer. Static testing
can be performed on anything that can be read throughout the product life
cycle, and it requires no special investments.

The ISEB/ISTQB vocabulary defines static testing as: “Testing of a compo-
nent or system at specification or implementation level without execution of
that software (e.g., reviews or static code analysis).“

The IEEE 1028 Standard for Software Review and Audits provides a thor-
ough definition and description of review and audit techniques. It defines
review as: “An evaluation of software element(s) or project status to ascertain
discrepancies from planned results or to recommend improvement. This eval-
uation follows a formal process (for example, management review, technical
review, software inspection or walk-through).”

The primary objective of any static testing is to find defects in the object
under testing and hence provide information about the quality of what is be-
ing produced. When we perform static testing we look directly at the written
work products, the documents. That means that we are looking for defects—
those that the producer happened to place there following a human mistake.

As can be seen from the IEEE 1028 definition there are a number of dif-
ferent static testing types or techniques. The types to be discussed here are, in
order of formality:

 Informal reviews
 Walk-through
 Technical review
 Management review
 Inspection
 Audit

A quick overview of the similarities and differences in the most commonly
used types is shown in the following table. The types are discussed in detail in
the following sections.

Reviews (Static Testing)276

Book_samlet.indb 276 2/19/08 8:15:23 PM

6.1.2.1 Static Testing Objects
Everything that can be read can be the object of static testing. If we look at
the documents being produced during the development and maintenance of a
product, there are documents for static testing in every phase from the earli-
est conception of the product to its disposal. Also documents produced by the
organization and the supporting process areas can, and should be, objects for
static testing.

A few examples of documents that can be subjected to static testing are
listed below. The list is by no means exhaustive and should only be used as
inspiration for identifying possible static testing objects in your organization.

 Organizational documents, such as policies, strategies, plans,
 reports, sales and marketing material
 Plans for products, projects, quality assurance, test, configuration
 management, customer interface, supplier agreements
 Requirement specifications from the business and from the users,
 and for software, hardware, data, network, services, and so forth

Walk-
through

Technical
review

Management
review

Inspection

Primary
purpose

Finding
defects

Finding defects Finding defects Finding
defects

Secondary
purpose

Sharing
knowledge

Make
decisions

Monitor and
control progress

Process im-
provement

Preparation Usually none Familiarization Familiarization Formal
preparation

Usage of
basis

Rarely Maybe Maybe Always

Leadership of
meeting

Author As appropriate As appropriate Trained
moderator

Recommend-
ed group size

2–7 3 or more 3 or more 3–6

Formal
procedure

Usually not Sometimes Sometimes Always

Volume of
material

Relatively
low

Moderate to
high

Moderate to
high

Relatively low

Collection of
metrics

Usually not Sometimes Sometimes Always

Output Sometimes
an informal
report

More or less
formal report

More or less
formal report

Defect list,
measure-
ments, and
formal report

2776.1 General Principles for Static Testing

Book_samlet.indb 277 2/19/08 8:15:23 PM

 Design for product, architecture, detailed components
 The actual product, such as code, data, hardware, installation

 guides, manuals, educational material
 Test specifications and test reports for component testing, integration
 testing, system testing, acceptance test
 Process descriptions, templates, examples, technique descriptions

6.1.3 Static Testing Cost/Benefit
There are costs associated with static testing, mainly because it takes time to
perform.

A rule of thumb says that 15% of the development budget should be
reserved for all the static testing activities.

These include:

 Description of the static testing processes in general
 Performance of static testing
 Collection and analysis of metrics
 Improvement of the static testing processes

On the other hand the benefits of static testing are plenty.
First of all, the benefit lies in the early defect detection. We can save a lot

of money by finding the defects close to their introduction.

The graph above shows that the cost of correction of a defect grows with
a factor 10 for each development phase it “survives.”

If a defect is introduced in the requirements and found and corrected in
the requirements phase, we can say that that costs us 1 unit. If the defect
is overlooked and not found until during design, it will cost us 10 units to
correct. The cost grows as illustrated, and if the defect is not found before
it causes a failure when the product is in use, it might cost us 1,000 units or
even more.

If we add the fact that research shows that more than half of the defects
found in the lifetime of a product—from requirements to disposal—can be
traced back to defects in the requirements, it is clear that there is money to

Original from Grove
Consultants – also
inspired by IBM.

100

10
1

Requirement Design Test Production
specification

1000,

Reviews (Static Testing)278

Book_samlet.indb 278 2/19/08 8:15:24 PM

be saved by performing static testing from the very start of a project. Part of
the cost involved in defect correction is the time it takes to actually locate the
defect. Since we find the defects directly in static testing, not through failures
as in dynamic testing, it is obviously faster to identify what to change.

Early defect detection also gives other benefits to the organization:

 Management gets an earlier insight into the quality of the product,
 if we report information about our early findings.

 We get better productivity in development and an overall increase
 in efficiency, partly because defects are found early, partly because
 static testing gives better insight into what is to be produced.

 Our dynamic testing time is decreased because we have fewer
 defects left to deal with.

 Performance of static testing also means that fewer defects are sent
 out to the customer, and this gives a higher trustworthiness and less
 maintenance.

 On the softer side static testing can spring off new ideas on how to
 do things better, because knowledge sharing is an important part of
 static testing.

 A better esprit de corps can be promoted, since more stakeholders
 are involved in getting the best quality of the product from the

 beginning—we did this together!

In more mature organizations, data collected from inspections or reviews
can be used to improve the static testing process and any other process
further. The costs of improvements to processes other than the static testing
processes themselves are not included in the 15% cost of static testing.

6.1.4 Static Testing Generic Process
Even though the static testing techniques are different in some ways, they
should all be performed within the framework of the generic test process.

6.1.4.1 Test Process Applied to Static Testing
All the static testing types have in common that their performance should
follow the general test process as depicted here.

The process activities are:

 Planning and control
 Analysis and design
 Implementation and execution
 Evaluating exit criteria and reporting
 Test closure activities

Traditionally rework has been considered part of the static testing process.

6.1 General Principles for Static Testing 279

Book_samlet.indb 279 2/19/08 8:15:24 PM

This is in principle no longer the case, since defect correction in the modern
understanding of testing belongs to the development or maintenance process,
not the testing process.

The general test process applied to static testing includes the following
activities, adjusted to the static testing:

 Planning and control
		 Quality criteria are defined
		 The participants are selected
		 The test meeting, if any, is planned

 Analysis and design
		 The material is distributed
		 The participants are briefed about the assignment

 Implementation and execution
		 Static testing execution, usually at the reviewers’ own desks
		 The static testing results are collected
		 Metrics may be collected about the performance and the
 results

 Evaluating exit criteria and reporting
		 The results are evaluated against any exit criteria
		 Static testing report may be produced

 Test closure activities

6.1.4.2 Static Testing Checking
The checking done in static testing can be done in three directions relative to
the document under testing. The directions are:

 Backwards
 Here we check if the document corresponds to its basis documentation
 and other related documents.

 Internal
 Here we check if the document is kept within the bounds of its purpose

 and scope, conforms to the template or standard it is built upon, is
 understandable, and free of spelling mistakes, incomprehensible lang-
 uage, and unexplained abbreviations.

 Forwards
 Here we check if the document is useful as the basis for further
 (development) work.

Reviews (Static Testing)280

Book_samlet.indb 280 2/19/08 8:15:24 PM

Like dynamic testing, static testing requires the existence of basis docu-
mentation specifying what we are testing against and what the requirements
for the document under testing are. If basis documentation isn’t available we
can only check the document internally, that is, check the document against
itself, for example, for inconsistencies.

Without basis documentation our testing will be based on assumptions
and feelings, and that is not testing.

Basis documentation can be other documents in the life cycle, check-
lists, or standards. Standards can be project-specific, company-specific, and/or
public.

6.1.4.3 Outcome of Static Testing
A static test on a particular document will have one of three possible outcomes,
namely accepted, accepted with rework, or rejected.

(1) If everything is fine and no defects are found, the document can be
accepted as it is. No further work is necessary before the document can be
used as the basis for further work or be documented for other quality assur-
ance activities.

(2) It may, on the other hand, happen that a number of defects are found.
If the defects are not too many and not too serious compared with the qual-
ity criteria it can then be decided that some rework is needed before the docu-
ment can be used further, but a restatic testing is not required. The document
is accepted on the understanding that the necessary rework will be done
before the document is released.

(3) In the case where the defects found are too numerous and/or too serious
in view of the quality criteria, the document can be rejected. This means that
it is returned to development for further work before it may be presented for
static testing again.

6.1.5 Roles in Static Testing
For static testing, as in dynamic testing, a number of roles to be filled are
defined. The generic roles are:

 Decision maker
 Leader
 Author
 Appropriate staff to execute the static test
 Reader/presenter
 Recorder

Not all roles need necessarily be filled for all static testing types. More people
may have identical roles in a static test, or one person may have several roles.

Accepted

Rejected

6.1 General Principles for Static Testing 281

Book_samlet.indb 281 2/19/08 8:15:25 PM

The decision maker is the person for whom a given static test is performed.
The decision maker is the one to determine if the objectives of the static testing
have been met. This role is only found in the more formal static test types.

The leader is the person responsible for the course of the static test, in-
cluding administration, logistics, chairing of formal meetings, ensuring that
objectives are met, and issuing of appropriate output. This role is only found
in the more formal static testing types.

The author is the producer of the document to undergo the static test.
Many of the roles in the development process can hence appear in the role of
author depending on the document. The author may, for example, be:

 Project manager—for plans
 Test manager—for test plans
 Analyst—for requirements
 Designer—for designs
 Programmer—for code
 Test analyst—for test specifications
 Method engineer—for process descriptions

The appropriate staff to execute the static testing is comprised of reviewers
or inspectors, depending on the type of static testing they are involved in.
These are the people “executing” the static test, that is, those looking at the
document. Technical as well as management staff may participate depending
on the type of static testing in question.

The reader or presenter reads, presents, or paraphrases the document un-
der static testing during the process.

The recorder records the issues raised during a static testing meeting. The
person holding this role should not have other roles in the particular static test.

6.1.6 Static Testing Type(s) Selection
The static testing types have their individual strengths and weaknesses. In
each particular case we have to choose between them and select the most
suitable one or ones to use.

The selection can be based on a number of aspects, including:

 Risk analysis
 The higher the product risk is, the more formal the static testing

 type should be. Risks are discussed in Section 3.5
 Secondary objective
 The primary objective of static testing is always to find defects, but

 as shown in the table above and discussed below, each type has its
 own secondary objective. This could be used as a selection criterion

 if a specific secondary objective is wanted.

Reviews (Static Testing)282

Book_samlet.indb 282 2/19/08 8:15:25 PM

 Development phase
 The earlier we are in the development, the more formal the static

 test should be to make sure that we are on the right track from the
 beginning.

The criticality of a document and the current development phase may be
used as combined selection criteria. In general it can be said that the higher
the criticality and the earlier in the development process, the more formal
should the static testing types we use be, whereas the formality can be loos-
ened for the lower criticality documents as we get further in to the develop-
ment process.

Static testing types may be mixed. Using one static testing type is far better
than none, and using several static testing types makes the static testing even
stronger. Note that inspection should never be the first static testing type to
apply, as this will jeopardize the effectiveness of the inspection.

Here are some examples of how static testing types may be mixed:

Informal review -> Inspection
This order ensures that the trivial defects have been removed before the in-
spection so that the inspection can be focused on major issues.

Technical Review -> Inspection -> Walk-through
This order ensures that the document is as defect free as we may expect and
that it is ready for transfer to another group of people in the development.
This other group gets the best starting point by being introduced to the docu-
ment by the author.

Technical review -> Walk-through
This sequence of static testing types is less formal than the one above, but the
objectives are the same.

Walk-through -> Inspection -> Informal review
This order ensures that the author is on the right track and can carry on work-
ing on the document until it is ready for inspection. After the inspection any
minor spelling, grammar, and formatting issues will be caught before the doc-
ument is released.

Informal review -> Technical review -> Inspection
This sequence is the most formal, and it ensures that the document doesn’t
have minor defects before the technical review and that the document is as
defect free as we may expect both from a technical and a more formalistic
point of view.

6.1.6.1 Static Testing of Code
Code is different from other types of documents in the sense that source code
can be the object of static testing, as well as of static analysis and dynamic
component testing.

6.1 General Principles for Static Testing 283

Book_samlet.indb 283 2/19/08 8:15:26 PM

All of these testing types are important because each type reveals different
types of defects in the code.

6.2 Static Testing Types
The static testing types we are going to discuss in detail are, as mentioned
earlier:

 Informal review
 Walk-through
 Technical review
 Management review
 Inspection
 Audit

6.2.1 Informal Review
The informal review is, as the name indicates, the least formal type of static
test. This is what we all do all the time, mostly without thinking about it as
a review: asking a colleague or a friend to look at something we have pro-
duced.

The objectives of informal reviews are very individual, depending on the
author’s needs. It could be everything from finding spelling and grammar
mistakes, to the structure of the product, to the actual contents from a profes-
sional point of view.

An informal review follows no formal documented process. The partici-
pants are normally just the author and one or two reviewers. The reviewer(s)
are usually chosen by the author. Most people have a network of reviewers
to choose from, depending on the document to be reviewed and the review
objective.

I have a number of reviewers for special objectives: one for spelling and gram-
mar, one for formalities and references, and a couple of trusted colleagues for
contents.

This type of static testing can be performed on any document at any state
during its production. The author decides when he or she would like an in-
formal review to take place. It could be on an early draft to make sure the
structure and level are correct, or it could be on the final draft to iron out the
last tiny wrinkles before the document is released.

The reviewer reviews the document when it fits into his or her schedule
after agreement with the author. Basis documents are rarely used; the review
is done according to the reviewer’s perception.

The author typically gets feedback in either pure verbal form or in the
form of notes scribbled on the document under testing.

Reviews (Static Testing)284

Book_samlet.indb 284 2/19/08 8:15:26 PM

Even though informal reviews rarely involve meetings as such, it is
always a good idea to go through the notes with the reviewer(s). Notes may be
unreadable and they may be difficult to understand for the author.

The result of an informal review varies and is very much dependent on the
review skills of the chosen reviewer(s).

The author decides when the review is over. He or she may correct the
document as he or she seems fit; there are no obligations following an infor-
mal review.

There are a few disadvantages connected with informal reviews. One is
the dependency of the reviewers’ reviewing skill, but that can easily be over-
come by finding the right reviewers for the job. Another disadvantage is that
there are usually no records kept of the reviews and hence no data available
for calculation of effectiveness.

The benefits of informal reviews should, however, not be underestimated.
Even though the reviews are informal they are very useful. In most compa-
nies no material must be delivered to another without having at least been
through an informal review.

6.2.2 Walk-Through
A walk-through is a step-by-step presentation of a document by the author at
a walk-through meeting. The primary objective is to find defects. Quite often
the author discovers defects him- or herself just by going through the document.

The secondary objective is to create a common understanding of the con-
tents of the document under testing. This is in fact often regarded as the pri-
mary objective, and it goes both ways. It is not necessarily just a question of the
participants understanding what the author has thought; it can be a question of
the author getting an understanding of where the participants want to go.

Walk-throughs are usually planned to take place at specific stages of the
development. It can be early in the production process for a document to
make sure the author is going in the right direction, or it may be as part of a
handover of the objects to those who are going to use the document as the
basis for their work.

Any document may be the object of a walk-through. The object is, however,
most often code or design since a common understanding of the document is
most important here.

The process for walk-throughs is usually not very formal. When the docu-
ment to test is in a state corresponding to the defined entry criteria, the walk-
through is scheduled and the participants, usually 3–7 people, are invited. The
reviewers may get the document in advance to familiarize themselves with it,
but there is no formal preparation required.

A walk-through meeting is always part of the process. The author acts as
the presenter of the document and the only other role represented is reviewers
(listeners). In cases of potential conflict a neutral facilitator may be present.

2856.2 Static Testing Types

Book_samlet.indb 285 2/19/08 8:15:26 PM

At the meeting the author “walks through” the object. This may be in the
form of a dry run of the design or the code using scenarios or cases, or a step-
by-step presentation of the contents. In the course of this the defects, omis-
sions, possible changes, improvement ideas, style issues, and alternatives that
pop up are noted and discussed.

Walk-through meetings should not last for more than 1–2 hours, so the
volume that can be “walked through” cannot be too high. If the full volume of
the document is too high, representative samples must be selected, and the in-
formation gathered must be applied to the rest of the document during rework.

After the walk-through meeting an informal report should be produced
summarizing the findings, at least according to IEEE 1028.

The exit criteria for a walk-through are usually that the meeting has been
held and the report approved. Corrections to the document under test are
made at the author’s discretion.

The only slight disadvantage of walk-throughs is that the benefit de-
pends on the author’s ability to present the object. Some people find it
extremely hard to express themselves verbally in front of an audience and that
may jeopardize the benefit of a walk-through. It is said that practice makes
perfect, and this also applies to walk-throughs. If the author finds it hard,
then start with a very small audience—maybe only one person and practice
the technique.

Walk-throughs are well worth the effort. The defect finding is an impor-
tant benefit, but the transfer and sharing of knowledge and understanding is
even more important and useful in an organization. This is valid for groups of
experienced people, groups of people with varied experience, and for groups
with newcomers under training.

6.2.3 Technical Review
A technical review is a peer group discussion activity that focuses on achieving
consensus on the technical approach to be taken. A technical review is also
known as a peer review.

Also here the primary objective is to find defects. The secondary objective
is to make technical decisions and (one hopes) reach consensus about the
approach to the work.

Technical reviews are usually planned to take place at certain times in the
development life cycle.

Any technical, that is, nonmanagement, document can be the object of a
technical review. Basis material in the form of preceding documents, require-
ments for the object, and/or standards and checklists should be used.

Technical reviews must have a manager, who is not the author. The man-
ager decides if the document is ready for review based on the demands for
a review expressed in the relevant policy and the test or quality assurance

Reviews (Static Testing)286

Book_samlet.indb 286 2/19/08 8:15:26 PM

plan.
The defined roles for technical reviews are fairly formal. The roles to be

represented are a manager, the chairperson for the review meeting, the pre-
senter, the reviewers, the author, and the recorder. The manager, chair, and
presenter role is often filled by the same person. The total number of partici-
pants should be 3–10 people.

It is important that the participants in a technical review are more or less
at the same level in the organization. A manager should not participate in a
technical review, as this might make the author and perhaps other partici-
pants uneasy and will lower the technical benefits of the review.

The technical review process is also fairly formal. The manager schedules
the preparation and the review meeting and presents the material to the re-
viewers. The reviewers are usually expected to examine the material for de-
fects and issues before the review meeting is held.

At the review meeting the chair provides an overview of what is going to
happen. The document is leafed through page by page and issues are noted
and discussed. Conclusions about what should be changed and what should
not should be reached before the end of the meeting.

The author is present, but in contrast to his or her role at a walk-through,
the author should stay silent and listen during a review meeting. Clarifying
questions may be asked and answered, but the author should not try to “de-
fend” him- or herself.

A report should be written after the review meeting summarizing the
findings and the conclusions. In some cases measurements related to the time
and defect finding are reported.

If the document is rejected and a new review is to be performed, this must
be scheduled by the manager.

If the document needs rework before it can be approved, this will take
place after the meeting and is usually done by the original author.

The disadvantages of technical (and management) reviews are few. The
outcome depends on the reviewers, but these can be selected carefully to get
the best results. If reporting of measurements is not imposed it is difficult to
calculate the effectiveness of the technical reviews, but the measurements are
not difficult to obtain.

The benefits of technical reviews are even greater than those for informal
reviews. Defects are found early and cheaply, information about the quality of
the produced objects is gathered, and the participants learn from each other.

2876.2 Static Testing Types

Book_samlet.indb 287 2/19/08 8:15:27 PM

6.2.4 Management Review
Management review is a review type performed on management documents.
This may be:

 Project-related plans, such as:
		 Project management plans, including schedules and resources
		 Quality assurance plans
		 Configuration management plans
		 Risk management plans
		 Contingency plans

 Plans pertaining to the product, such as:
		 Safety plans
		 Installation plans
		 Maintenance plans
		 Backup and recovery plans
		 Disaster plans

 Reports, such as:
		 Progress reports
		 Incident reports, including customer complaints
		 Technical review reports
		 Inspection reports
		 Audit reports

The primary objective is to find defects in the documents under static
testing. The secondary objective, however, is usually even more important.
This objective is to monitor progress according to the current plan, to assess
status, and to make necessary decisions about any actions to take accordingly,
including changes in resources, time, and/or scope/quality and updating the
plan accordingly. The scope and the quality are usually expressed in terms of
requirements to fulfill.

Management reviews are usually planned to take place at certain times in
the development life cycle, typically in connection with defined milestones,
that is, transfer from one development phase to the next.

There is usually no basis material as such unless a document is reviewed
in relation to a document standard or the like. On the other hand, a manage-
ment review is performed using all appropriate information about the status
of the project and the product, like progress and status reports concerning
both technical and financial aspects and incident reports.

The roles that should be filled for a management review are the decision
maker (the owner of the plan), the leader, reviewers, and a recorder. The re-
viewers are relevant stakeholders and should include management and tech-

Reviews (Static Testing)288

Book_samlet.indb 288 2/19/08 8:15:27 PM

nical staff involved in the execution of the planned activities.

For the management review of a test plan the reviewers should include the
test manager, the project manager (higher management), and the people in-
volved in the testing activities.

The total number of participants should be within 3–10 people.
The management review process is also fairly formal. The leader sched-

ules the preparation and the review meeting and presents the plan and any
other information to the reviewers. The reviewers are usually expected to be
prepared, that is to know the current plan and any deviations from it, before
the review meeting is held.

At the review meeting the plan is checked for compliance with other plans
and consistency with reality. The performance of management procedures be-
ing applied may also be assessed. Conclusions about what should be changed
in the plan and what should not should be reached before the end of the
meeting.

A report should be written after the review meeting summarizing the ac-
tion items defined and the issues to be resolved, if any. In some cases mea-
surements related to the time and effectiveness of the review are reported.

The disadvantages of management reviews are few. The outcome depends
on the reviewers, but these are usually sufficiently committed. If reporting of
measurements is not imposed it is difficult to calculate the effectiveness of the
technical reviews, but the measurements are not difficult to obtain.

The benefits of management reviews are many. A plan that is agreed on
by all relevant stakeholders has a higher probability of being followed than a
plan without such an agreement. The benefits of monitoring and control of
progress of an assignment are discussed for testing in Section 3.4.

6.2.5 Inspection
Inspection is a formal and well-defined type of static test. The technique was
first introduced in 1972 in IBM by Michael Fagan, and since then the inspection
process has evolved through use in regular development and experimentation.

Fagan inspections have a number of specific characteristics, which must
all be observed before a static testing activity may indeed be called an inspection.
The characteristics are:

 The process to follow must be the formally defined process
 The roles must be the defined inspection roles
 Source material (basis documentation) must always be used
 The inspectors must look for specific kinds of issues
 Metrics must be defined and collected

2896.2 Static Testing Types

Book_samlet.indb 289 2/19/08 8:15:27 PM

 Process improvement is an integrated part of the process
 The moderator and the inspectors must be trained

Inspections have two official purposes:

 Product improvement
 Process improvement

As with the other static testing types the main objective of inspections is
to find defects and thereby contribute to the improvement of the product.

The secondary and almost equelly important objective of inspections is
contribution to process improvement. This is primarily aimed at improve-
ments to the inspection process itself, but other processes may also benefit
from the results of inspections. The process improvement objective is sup-
ported by the collection and analysis of measurements for all inspections.

The formal inspection process consists of the activities:

 Planning
 Overview
 Preparation
 Meeting
 Rework
 Follow-up

The roles in play in inspections are:

 Inspection leader
 Author
 Inspectors
 Moderator (meeting chair)
 Recorder

The involvement of the roles varies from activity to activity during the
course of the inspection process, as shown in the following figure.

Leader

Leader and inspectors

Inspectors

ALL

Author

Author

Author

Reviews (Static Testing)290

Book_samlet.indb 290 2/19/08 8:15:28 PM

6.2.5.1 Inspection Leader
The inspection leader is responsible for the performance of the inspection
process in a project or an organization. This responsibility includes:

 Selection of the inspection team, not least of all the inspectors
 Planning of the inspection
 Monitoring and controlling the course of the inspection, and taking

 corrective action as required
 Verifying if the entry criteria are met
 Conduction of the overview activity
 Being an active part of the follow-up activity
 Verifying if the exit criteria are met and closing the inspection
 Informing stakeholders of the results
 Contributing to process improvement of the inspection process and
 other processes in general

It is quite often seen that the inspection leader also fills the role of mod-
erator, and takes part in the inspection meeting in that capacity.

An inspection leader must be trained in the inspection process, in the
metric plan in the organization, in general process improvement, in statistical
improvement methods, and in the organization’s inspection policy.

6.2.5.2 Inspection Entry and Exit Criteria
Entry and exit criteria must always be defined and adhered to for an inspection.
The inspection leader carries the overall responsibility for ensuring that the
criteria are met, though the author is responsible for making sure they are.

The purpose of the entry criteria is to make sure that time is not wasted
by starting the inspection process too early. The document to test must be in a
reasonable state, so that any issues can be easily handled and corrected.

Entry criteria may be:
 Relevant checklists are available
 Basis documents have exited their inspections with a known and
 acceptable remaining defect level
 In 10 minutes of trial examination not more than one major defect

 is found
 The document has gone through spell-checking, indexing, and
 grammar check as appropriate

2916.2 Static Testing Types

Book_samlet.indb 291 2/19/08 8:15:28 PM

Exit criteria must be met in order for the document to be approved and
the inspection to be officially finished. Exit criteria are therefore defined both
for the document and for the inspection process.

Exit criteria for the document being inspected may be that the entry criteria
are still met, that any necessary rework has been performed, and that this
rework has been verified by the inspection leader.

For the inspection as such the exit criteria may be that the checking and
logging rate were within the prescribed limits and that the estimate for the
remaining defects in the document is below an acceptable limit.

6.2.5.3 Inspection Planning
The planning activity is concerned with the document to be inspected, the
people involved, the metrics to collect, and the schedule and logistics.

The planning must take the nature of the document to be inspected into
account. This includes the size and the complexity of the object. Depending on
the document the optimal checking rate must be determined. The checking
rate is the number of units, typically pages, to be inspected per time unit, typi-
cally hours, by the inspectors. Measurements collected for inspections should
be used to determine the optimal checking rate for the various types of objects
appropriate for the organization.

The size and complexity of the document as well as the result of a risk
analysis can indicate if the entire document is to be inspected in one go or if
chunking or sampling should be used. Inspection is an intensive static testing
technique, and it is usually not possible to make a complete inspection of a
document in one single inspection cycle.

Chunking means that the document is divided into series of a few pages
(or other units as appropriate) at a time. All relevant parts of the document
are checked in a number of preparation-to-follow-up cycles. This technique
has the very useful side effect that defects found in one chunk can be cor-
rected in other chunks before these are subjected to the inspection.

Sampling means that only selected part(s) of the document are to be
checked. Based on the results of the inspection of the sample, defect densities
for the uninspected checked parts can be calculated. Sampling is a cheaper
alternative to checking the entire document, and it can be used to provide a
firsthand measure of quality, to train the author or other inspection roles, and
to gain insight into defect patterns. The underlying idea of sampling is that
defects in one part of a document often exist in other parts as well. Having
found the defects in the sample, we can look for them in the rest of the object.
Less formal static testing types may then be used on the rest of the object to
sweep up.

The planning must also deal with the people to be involved in the inspec-
tion. It must be decided who is going to fill which roles, and it must be en-

Reviews (Static Testing)292

Book_samlet.indb 292 2/19/08 8:15:29 PM

sured that the right people are available and able to participate as needed.
The most important role to fill at this point, where the author is given as

the author of the document to inspect and the inspection leader is already at
work, is that of inspector or inspectors. Inspectors may be selected according
to specific skills, technical or domain knowledge, and/or availability.

Inspectors may have individual inspector roles. The inspector roles are
subroles related to the inspector role, and not to be mixed up with the other
inspection roles. The concept of inspector roles is discussed below.

The measurements to be collected during inspections should include the
following:

 Sizes
 Defects found—classified after severity
 Cost of corrections
 Time used on the individual activities

The sizes include the total size of the object and possibly size(s) of in-
spected chunks or samples. It also includes the number of participants, clas-
sified by roles.

Cost of corrections includes time x rate of those involved in the rework
and other correction activities plus any additional expenses.

The time used on the individual activities include planning time, time used
per role for the overview, time used per role in preparation, and time used per
role in the inspection meeting. This latter time may be collected as time used
for logging, for discussion time, and for formalities and other things. Last we
need the time used for follow-up.

The planning includes the production of the inspection schedule. This
must be based on the overall schedule for static testing and for the project,
and the availability of the object, the base document, and the people filling the
roles. It is important that the specific preparation time is calculated for each
individual preparation to be performed based on the optimal checking rates.

6.2.5.4 Inspection Overview
The overview is the kickoff of the inspection. The overview should include:

 Group education of inspectors
 Assignment of inspector roles
 Distribution of material

2936.2 Static Testing Types

Book_samlet.indb 293 2/19/08 8:15:29 PM

The overview is the place where the inspection leader introduces the in-
spectors to the specific inspection to be done.

The group education of the participants has two goals, namely, education
in the inspection process to be used in this particular inspection, and, in the
material to be inspected. The plan for the inspection, not least the time as-
signed for each individual to prepare, should be presented. Information about
the current state of inspections in the organization, including relevant statis-
tics and future plans, should be given. This may put this particular inspection
in perspective and may be a good motivational factor.

More formal education leading to certification will have to be done as part
of the organization’s training program apart from the actual inspections.

The introduction to the material to be inspected could be in the form of
somebody paraphrasing it, or making a short presentation of such factors as
purpose, structure, content, and layout. This may resemble a walk-through
but the presentation should not go into the actual contents of the material.

The overview ends with the assignment of specific inspector roles and
handouts of object and base material. It is important that the inspection lead-
er makes sure everybody understands his or her role and is happy with it, and
that he or she knows what other roles are being covered. The inspector roles
are explained below.

An actual overview meeting is not necessary if everybody involved is very
experienced. In this case the roles may be assigned individually and the mate-
rial just sent out to the inspectors.

6.2.5.5 Inspection Preparation
The preparation activity is the heart of the inspection. This is the execution of
the testing.

During the preparation each of the inspectors performs the individual
checking of the object according to his or her assigned inspector role using
the time granted.

Each inspector performs the preparation when and where it suits him or
her. As an inspector you should make sure that you can sit undisturbed for
the entire preparation time to be used and of course that you can perform the
preparation before the inspection meeting is to take place.

The inspectors must follow the standard requirements for inspection
preparations, namely:

 Note starting time
 Note down or mark issues
 Focus on majors, at least in the beginning

Reviews (Static Testing)294

Book_samlet.indb 294 2/19/08 8:15:29 PM

 Use the given time (no more, no less) to respect checking rate
 Count issues

In inspection the issues found during the preparation should be classified
as major, minor, or question—marked as M, m, or ? The definitions of the
classifications are:

 Major: The issue seems to concern more than the inspected object
 and/or will cause further damage.
 minor: The issue is not likely to cause damage to anything beyond

 the inspected object.
 ?: The issue needs to be clarified by the author

Note that even though the object is the one being inspected, issues may
be found in the base documents as well. These should of course also be noted
and reported.

6.2.5.6 Inspector Roles
The inspector, or rather usually the inspectors as most inspections include a
number of inspectors, are the people doing the actual checking of the document.

The inspectors must be people who like to find defects. It may sound stu-
pid, but many people are uneasy about finding defects in other people’s work
and this attitude may jeopardize the effectiveness of the inspection, and make
it a very unpleasant experience for the inspectors.

During the preparation the inspectors must keep the checking rate they
have been given. They must make sure that they have finished the checking
in time for the meeting, or they must give notice of problems to the inspection
leader as soon as they occur.

The inspectors must also adhere to the inspector role they may have been
assigned.

The concept of inspector roles is based on the facts that we tend to see
what we are looking for and that we are usually only able to keep focus on one
or two things at the time.

What do you see if you are asked to inspect the flowers in the drawing
shown here?

If you are not asked to look for something specific you may count the flow-
ers, note the color of the flowers, count the number of leaves, see if there are
more buds than open flowers, maybe note the band and its color, and check if
the number of stems corresponds to the number of flowers and leaves.

That is all fine, but what about the faces hidden in the bouquet? Did you
see them? If not, look again before you turn to the solution in Appendix 6A.

2956.2 Static Testing Types

Book_samlet.indb 295 2/19/08 8:15:30 PM

The inspectors may be given specific inspector roles to make each of them
focus on just what he or she is supposed to look for and hence make sure that
all important aspects are given first priority by at least one inspector.

Inspector roles may be chosen among the following (ordered alphabeti-
cally) or others that may be relevant in the context:

Checklist: The inspector must inspect the document in relation to specific
or generic checklists. Checklists may summarize rules, previously experienced
problems, usability, or any other imaginable aspect of the particular object.

Documents: The inspector must inspect the consistency between the docu-
ment and one or more other documents.

Focus: The inspector must inspect the document looking for a specific kind
of problem. The focus could be on usability, system implications, financial
aspects, readability, grammar, cross-references, domain terms use, or perspec-
tive (for video games or the like). This inspector role may be somewhat less
objective than the others unless specific criteria have been defined.

Perspective: The inspector must inspect the document using a more active
approach. The perspective is intended to represent or mimic a specific role of
a future user of the object. This could, for example, be a designer, a tester, or
a programmer. It is important that the inspector having a perspective role ei-
ther normally fills this role or understands it fully. The perspective role is less
specific than the scenario role.

Procedural: The inspector must inspect the document following a specific
procedure, for example, reading the document backwards.

Scenario: The inspector must inspect the document following a specific
work procedure for a specific role. This inspector role is therefore more spe-
cific than the perspective role. Scenarios with accompanying questions must
be created. This can be a significant task but can on the other hand help avoid
duplication of inspection efforts.

Standard: The inspector must inspect the document against external stan-
dards, for example IEEE, BS, or ISO standards, or internal standards such as
company, organizational, business, project, or phase-specific standards.

Viewpoint: The inspector must inspect the document as, for example, a
user, an analyst, a tester, or a designer. This role is very similar to perspective,
but relevant base documents are also used.

No matter which inspector role an inspector is to follow, issues falling un-
der another role may be found and these should of course also be noted and
logged during the inspection meeting. So should any issue identified in the
base documents.

6.2.5.7 Inspection Meeting
The purpose of the inspection meeting is to log the issues found during the
preparation. It may seem unnecessary to have a meeting if all issues are not-
ed down. However, experience shows that about 10–20% more issues will be

Reviews (Static Testing)296

Book_samlet.indb 296 2/19/08 8:15:30 PM

found during a meeting. The meeting therefore enhances the effectiveness of
the inspection.

If only very few issues are found during preparation or only one or two
inspectors participate in the inspection, the meeting may be skipped.

The moderator conducts the meeting. He or she must be neutral with
respect to the document being inspected and any base documents used. The
moderator should be trained in conducting inspection meetings and know the
rules. Being a good moderator requires good training, good people skills, and
a good sense of judgment.

The moderator must be able to:

 Cancel the meeting if anybody is unprepared
 Be strict and diplomatic
 Ensure that the logging rate is kept
 Not allow discussions to evolve
 Keep issues aimed at the product, not the producer
 Keep solution-oriented statements to a minimum
 Make unpopular decisions like evicting someone or stopping the

 meeting
 Keep participants with strong technical skills but low social skills

 from “killing” each other

It may sound as if an inspection meeting is a terrible ordeal, and it may
indeed be if care is not taken to make it the productive and inspiring activity
it is supposed to be.

The first activity is to collect specific information, such as the present date
and time and the names of the participants. The total number of issues found
by each of the inspectors must also be reported and registered.

When the formalities are being dealt with the logging can begin. The
moderator goes through the inspected document line by line, section by sec-
tion, or using any other unit of the document that is relevant. For each unit
the inspectors report their findings in turn, and the recorder logs the issues.

The reporting should concentrate on majors and questions. Minors can be
given to the recorder later, as long as the relevant measurements are collected
and registered.

When new issues are encountered during the meeting, these must be re-
corded as well and they must be marked so that it is possible to see how many
new issues an inspection meeting spurred.

2976.2 Static Testing Types

Book_samlet.indb 297 2/19/08 8:15:30 PM

A logging form may look like this:

In the second column M and m stand for Major and minor, respectively,
as explained above. o stands for old: issue found during preparation, and n
stands for new: issue found during the inspection meeting.

The recording must be done in such a way that the author will be able to
understand it afterwards. The recorder should be able to keep up with the log-
ging rate. The logging rate should be kept high. As a rule of thumb, one to two
issues should be recorded per minute. The moderator should check regularly,
at least at half time to see if the rate is kept.

No solutions must be suggested or other discussions started during the
recording. This would lower the logging rate significantly and would probably
not produce a useful solution anyway. If needed, a solution-finding meeting
may be scheduled to take place later.

An inspection meeting should not last longer than one hour without a
break, not longer than two hours in total. This is important in order to keep
logging rate high and focused. Breaks can, however, be used to smooth feathers,
console the author, or keep people in line.

At the end of the inspection meeting a conclusion must be reached as
to whether the document is accepted, accepted with rework, or rejected. If
the document is rejected it must be sent back to the author for further work
and another static test, maybe an inspection, maybe a review, will have to be
scheduled.

If rework must be done, then this is the next activity in the inspection
process.

Issue no. M, m, o, n Description Document Page/line

1. M, o No. scheme is unclear - p. 3, 143
(17)

2. M, o Testgroup missing no.
(CLL)

Systesplan p. 5-6

3. M, o Heading ´User setup´
not found in testplan

systesplan p. 5

4. Term ´testingfields´
meaning unclear

- p. 3

5. m, o Term ´Setup user
screen´ not appropiate

- p. 3

6. m, o Numbers not ordered - p. 3 purpose

7. m, o ´Validations´
meaning unclear

- p. 3 purpose

8. M, o 71, 72, 77, 65 is
heading not

- p. 3 purpose

Reviews (Static Testing)298

Book_samlet.indb 298 2/19/08 8:15:31 PM

6.2.5.8 Rework After Inspection
Rework is the activity in the inspection process in which the issues found
during the preparation and the meeting are dealt with.The issues concerning
the document are resolved by the author or the editor of the document in ac-
cordance with the basis documentation.

Issues in other documents outside the authority of the author or editor
must be directed to the appropriate people by the use of incident registrations.

6.2.5.9 Inspection Follow-Up
The inspection process cannot be finished before the exit criteria have been
met. The inspection leader must make sure that the document has been cor-
rected and that this correction has not resulted in too many additional de-
fects.

The inspection leader cannot be responsible for the actual work, so this
may require one or more informal or perhaps formal reviews. All issues
must be classified as either corrected, no correction done or needed, or issue
redirected.

The document should now be ready for others to use and to be placed
under configuration management as ready according to the project plan.

The follow-up activity includes collecting the final measurements, and
performing measurement analysis. Timing measurements must be collected
for rework and follow-up, possibly distributed on individual activities such
as edit time, time used to write incident reports, approval time, and analysis
time.

Based on the measurements and other experience data, the number of
remaining defects can be estimated, as may be the cost saved by finding the
defects now rather than later.

Any ideas for process improvements must be registered as appropriate.

6.2.5.10 Inspection-Based Process Improvement
The process improvement originating from inspections is based on analysis
of the collected measurements. From the first pilot of inspections in an or-
ganization measures must be collected to show the value of the inspection,
calculating all the time saved by finding defects earlier than normal. It is very
important for the success of inspections that everybody involved understands
the reason for the rigorously formality and is prepared to adhere to the rules.

Improvement of the inspection process in the organization should be on-
going in order for it to be adapted to the best use. Each organization must
establish it own numbers for aspects like:

2996.2 Static Testing Types

Book_samlet.indb 299 2/19/08 8:15:31 PM

 Optimal checking rate
 Optimal logging rate
 Optimal pages or participants per inspection

These metrics make it possible to create evidence of the benefits, effi-
ciency, and effectiveness of formal inspections.

The practice of inspections in an organization should only continue if it is
cost-effective compared to other test methods.

Information gathered from inspections can also be used in process im-
provement initiatives beyond the inspection process. Root cause analysis of
defects found, both defects in the inspected document and in the basis docu-
ments, can lead to processes in need of improvement.

For an inspection it appeared that some of the inspectors had used an old ver-
sion of one of the base documents. When this was followed up on, it revealed
a weak process in the configuration management system.

6.2.6 Audit
Audit is by far the most formal static testing technique. Audits are performed
by one or more external auditors. Auditors must have a special education and
certification to perform official audits.

Audits are usually performed late in the development life cycle, just before
release of the product and/or closedown of the project. Smaller audits may be
performed in connection with other important milestones.

The primary objective of an audit is to provide an independent evaluation
of an activity’s compliance to applicable process descriptions, contracts, regu-
lations, and/or standards.

Audits may be either internal or external. Internal audits are performed
by auditors from the organization, but external to the project under audit. Ex-
ternal audits are performed by auditors entirely external to the organization,
usually from some sort of authority organization.

An internal audit may be conducted by certified auditors from the organi-
zation’s method department to evaluate if CMMI®-compliant processes for
system and acceptance testing have been followed correctly.

An external audit may be performed by certified auditors from the FDA
(the American Food and Drug Association) to evaluate if the FDA regulations
have been followed during the entire development life cycle of a product for
use in connection with patient treatment at hospitals, and thereby determine
if the product can be allowed into the American market.

Any document, technical as well as managerial, can be part of an audit. In
an audit a number of documents, if not all documents, will usually be evalu-

Reviews (Static Testing)300

Book_samlet.indb 300 2/19/08 8:15:31 PM

ated and their consistency as well as their collective compliance to the basis
material checked.

A lead auditor is responsible for the audit, and he or she also acts as mod-
erator. The lead auditor and any other participating auditors collect evidence
of compliance through document examination, interviews, and walk-throughs
of documents of special interest.

The audit leader decides when the audit should take place, and the docu-
ments will be audited in the state they are in at the time of the audit. Usually
a fair warning is given and organizations may rehearse the audit to patch up
any obvious defects in time.

The result of an audit is a report in which the findings are summarized in
the form of lists of observations, deviations, recommendations, and corrective
actions to be taken, as well as a pass/fail statement.

The disadvantages of audits are that they are expensive and the least
effective static testing type. On the other hand, audits are usually performed
because they are mandatory in some context and therefore serve a different
purpose than pure defect finding, such as official approval of the product or
process improvement.

6.3 Static Testing in the Life Cycle
During the course of the development of a product, appropriate static tests
should be planned in the project plan, the quality assurance plan, or the test
plan.

Static testing can, and should, start as soon as something is officially writ-
ten down in the product lifecycle. This may be when the first idea begins to
take form or when a contract for development is drawn up.

The planning of static tests to be performed may include static tests of spe-
cific documents at specific points in time—typically aligned with milestones
planned for the development according to the chosen development model.

Development models are discussed in Section 1.1.1
No matter which development model one chooses for a given project, each

of the phases usually ends with a milestone with a specified outcome. Mile-
stones may be named after the documents to be delivered at the milestone
and the associated static tests may be named accordingly.

The number, names, and contents of milestone deliveries depend on the
individual project and the chosen development model.

An example of milestones with associated deliveries to be reviewed in a project
following a small waterfall model is:

 Closing of contract
 Closing of requirements specification
 Closing of architectural design

3016.3 Static Testing in the Life Cycle

Book_samlet.indb 301 2/19/08 8:15:31 PM

 Closing of detailed design
 Acceptance/qualification of complete product
 Final delivery/operational readiness

The type of static testing for the milestones as well as the objectives of the
individual static tests should be selected according to the type of document,
the criticality of the product, and the product risks.

The static testing associated with the contract milestone would typically
be a management review, involving management, customers, and technical
people, for example, from analysis, development, and testing.

Static testing of requirements specifications and design documents may
be combinations of walk-throughs, technical reviews, and/or inspections.

The static testing for acceptance and operational readiness may typically
be comprised of management reviews of test reports and/or formal audits.

Management reviews of plans and related progress documentation should
also be part of the milestone-related static tests.

The basis documentation to use for these static tests must be documents
produced and approved for the previous milestones, as well as those pertaining
to standards and regulations. When static testing is performed on a docu-
ment, defects are often found in the basis documentation as well, and these
will change versions as the development progresses.

The table below shows an example of milestone deliveries and their contents
and development over time. The numbers shown for the documents and the
product are their respective version numbers. A dash signals that the docu-
ment/product is not part of the specific delivery.

Milestone
delivery

Included
configuration item

Contract 1.0 1.1 1.1 1.1 1.2 2.0

Project plan 1.0 2.0 3.0 4.0 4.1 4.1

Test plan - 1.0 2.0 3.5 4.2 5.3

Requirement specification - 1.0 1.3 1.4 1.6 1.6

Acceptance test specification - 1.0 1.3 1.4 1.5 1.5

Architectural design - - 1.0 1.2 1.3 1.3

Detailed design - - - 1.0 1.1 1.2

User manual - - - - 1.0 1.1

Complete product - - - - 1.0 1.1

C
lo

si
n

g
 o

f
co

n
tr

ac
t

C
lo

si
n

g
 o

f
re

q
u

ir
em

en
ts

C
lo

si
n

g
 o

f
ar

ch
it

ec
tu

ra
l

d
es

ig
n

C
lo

si
n

g
 o

f
d

e-
ta

ile
d

 d
es

ig
n

A
cc

ep
ta

n
ce

 o
f

p
ro

d
u

ct

F
in

al
 d

el
iv

er
y

Reviews (Static Testing)302

Book_samlet.indb 302 2/19/08 8:15:32 PM

6.4 Introducing Static Testing
The introduction of static testing in an organization is a process improvement
project with all that this entails in terms of organization changes. The prin-
ciples of process improvement in general are discussed in Section 8.2.1.

Management commitment and support are essential for the implementa-
tion to be a success. An implementation process must be described and fol-
lowed closely to enhance the probability of the introduction of static testing
processes and techniques being successful.

An implementation process should at least include the following activities:

 Make necessary new process descriptions and/or necessary adjust-
 ments to existing ones

 Perform a pilot project
 Assess the pilot project
 Produce a rollout strategy
 Make the rollout happen
 Follow up on the rollout

The necessary resources, both in terms of people, time, money, and train-
ing must be provided and sustained until the usage of the new procedures is
an engraved part of everyday working life.

6.4.1 Static Testing Implementation Roles
A number of roles must be in place to make a process improvement, here the
introduction and continuous improvement of a static test, a success. The nec-
essary roles are illustrated in the following.

The most important role is the sponsor. This must be a senior manager with
enough impact both financially and organizationally to support the introduc-
tion and improvement all the way.

The sponsor must provide visible support. He or she is the one to approve
the project, demand results as the implementation is carried out, and make

ChampionChange
agents

Target group

Change
State New state

Rationale

Surroundings

Sponsor

ChampionChange
agents

3036.4 Introducing Static Testing

Book_samlet.indb 303 2/19/08 8:15:33 PM

necessary decisions on the way. The sponsor must make the rationale for the
introduction of the static testing visible to all involved to help overcome the
natural resistance to changes that will inevitably occur.

The target group consists of the people who are going to be the everyday
users of the new processes. They are the ones that need to change their be-
havior and those most likely to resist the implementation. It is therefore very
important that they are involved and heard in both the description of the
processes to use and the introduction of them. The target group must also be
supported all the way during the introduction.

The support is primarily provided by the champions. The champions are a
significant force in the introduction. They have day-to-day contact with the
target group, and they carry a lot of the responsibility for the success of the
introduction.

The champion is the ambassador for the new processes and must be honestly
enthusiastic about the benefits. He or she must also be very good at working
with people, even if they get negative or discouraged. The champions are best
recruited among the people in the target group and must have the trust of the
others.

A champion must understand the new processes, and he or she must also
understand the issues facing the target group and must be able to combine
the two skills to provide the best support to the target group.

The change agents are the bridge between the sponsor and the champions.
This role has the daily responsibility for the implementation of the processes
and is typically a line manager or a manager in a process or a method function
manager.

It is the responsibility of the change agent to plan and manage the entire
introduction, including the pilot project, and to ensure the completion of the
introduction. The change agent could be the same person as the champion or
one of the champions.

6.4.2 Static Testing Processes
Before static testing can be introduced, processes for each static testing type
must be produced.

A process description may include:

 Purpose—A description of what must be achieved
 Entry criteria—What must be in place before we can start
 A definition of the necessary input – What are we going to work with
 A list of activities—The procedure, what are we going to do
 Roles – who are going to perform the activities
 Methods, techniques, tools—How exactly are we going to perform

 the activities
 Templates—What should the output look like

Reviews (Static Testing)304

Book_samlet.indb 304 2/19/08 8:15:33 PM

 Measurements—What metrics are we going to collect for the process
 A description of the output—What are we expected to produce
 Exit criteria—What do we need to fulfill before we can say that we

 have finished

When writing processes for the first time, inspiration can be taken from
existing practices in the organization, practices expressed in maturity models,
and appropriate process descriptions collected from standards, literature, and
available tools.

Processes in general are discussed in Section 2.1.

6.4.3 Static Testing Piloting
A pilot project should always be performed for processes before we commit to
introducing them across all projects.

There are a number of reasons for performing a small-scale pilot project.
First of all we need to get some experience with the processes we have devel-
oped. The pilot should enable us to identify necessary adjustments.

A goal for the pilot project is also to verify the business case and ensure
that the benefits of the introduction of static testing can in fact be achieved.
Finally a pilot can help us refine the estimate for the actual costs and benefits
for the introduction.

A pilot should take between three and six months, and be followed closely.

6.4.4 Static Testing Rollout
The rollout of the static tests should be based on a successful evaluation of the
pilot project. Rollout normally requires the great involvement of all the people
filling the different roles, not least the users of the static testing processes: the
target group.

First and foremost, the target group must be trained properly and at the
right time in the static testing processes they are supposed to follow. Badly
timed or inadequate training can ruin an otherwise sound introduction of
static testing.

A rollout strategy that suits the nature of the organization must be
defined. A “big-bang” rollout, where everybody starts using the new static
testing processes at a given point in time, works in some organizations. In
other organizations a gradual introduction, where the processes are deployed
as the need arises, will work better.

No matter how the rollout is done the most important activity at this
point is to support the new users as the rollout takes place. The champions
must be prepared to

3056.4 Introducing Static Testing

Book_samlet.indb 305 2/19/08 8:15:33 PM

 Support the users
 Support the users
 Support the users
 Support the users

until the usage of the static testing processes is a completely integrated part
of the daily work.

6.4.5 Psychological Aspects of Static Testing
We must be aware that static testing may end in frustration for both the
author and the reviewers when static testing is introduced and even when it
is performed on a regular basis.

The author has done his or her best and is perhaps expecting to be praised
for the good work during the static testing feedback. This will, however, rarely
happen. The reviewers are, as they should be, looking for shortcomings and
defects, and even if the work is in fact excellent there will always be some-
thing to find, and that should be found and brought forward. The reviewers
do not expect the author to be personally offended by the static testing feed-
back—they are also doing a good job.

Both parties will have to keep in mind that static testing is a necessary and
effective activity and that it is there to help increase the quality of the work.
There is nothing wrong with making mistakes—everybody does that. And
there is nothing wrong with pointing out mistakes, as long as the reviewers
keep the static testing objective and the reporting matter-of-fact.

The static testing manager should be attentive to the fact that he or she
can enhance the team spirit by using static tests in a constructive way and
instill the understanding in all the participants that static tests give a better
understanding of the product, the processes, colleagues’, and one’s own capabil-
ity, and that static tests help increase the maturity level in the organization.

All participants in static testing, as in all kinds of testing, should learn to
give and receive criticism in a constructive way. Chapter 10 discusses this in
more detail.

Questions
1. When was the concept of static testing first introduced in the
 software industry?
2. Why is the overall generic term “static testing” used in this book?
3. What are the static testing types discussed in this book?
4. What is usually the object of static testing?
5. How much of the development budget should be reserved for static
 test activities?

Reviews (Static Testing)306

Book_samlet.indb 306 2/19/08 8:15:33 PM

6. How much does the cost of defect correction increase for each phase
 the defect “survives”?
7. What benefits do static tests have?
8. What are the generic activities involved in static testing?
9. What are the three checking directions to be used in static testing?
10. What are the three possible outcomes of a static test?
11. What are the generic roles in static testing?
12. How should the static testing types to use be selected?
13. Which rule applies when static testing types are mixed?
14. What is special for quality assurance of code?
15. What characterizes an informal review?
16. How should feedback from informal reviews be given and why?
17. What is special about walk-throughs?
18. What can jeopardize the effectiveness of a walk-through?
19. What are technical reviews also called?
20. Who should participate in a technical review?
21. What is the author’s role in a technical review?
22. What is the object of management reviews?
23. What is the main benefit of management reviews?
24. What characterizes an inspection?
25. What are the two official purposes for an inspection?
26. What are the six activities in an inspection?
27. What are the roles involved in inspections?
28. Why are entry criteria defined for inspection?
29. What aspects does the planning deal with?
30. What is chunking, and what is sampling?
31. What metrics could be collected during an inspection?
32. What happens during the overview activity in inspections?
33. What must happen during preparation in inspections?
34. What characterizes a major issue?
35. Why may inspectors be given specific inspector roles?
36. What are the inspector roles mentioned here?
37. What must the moderator be able to do in inspections?
38. What should happen to new issues found during the inspection
 meeting?
39. How long should an inspection meeting last?
40. What must happen to issues found in basis documents?
41. What are the two main activities in the follow-up?
42. How can inspections contribute to process improvement?
43. Who may perform audits?
44. How can static tests be applied in connection with the development
 life cycle?

307Questions

Book_samlet.indb 307 2/19/08 8:15:34 PM

45. What activities should be performed when introducing static tests in
an organization?
46. What are the roles to be filled when introducing static tests?
47. What may be included in static testing process descriptions?
48. Why should static testing pilots be conducted?
49. What is most important in connection with rollout of static
 testing processes?
50. Why may static testing end in frustration?

Reviews (Static Testing)308

Book_samlet.indb 308 2/19/08 8:15:34 PM

Appendix 6A Solution to the Flower Drawing
The drawing shown in Section 6.2.5 shows the faces of Napoleon, his second
wife, Marie Louise, Archduchess of Austria, and his son, Napoleon II, as indicated
here.

309Appendix 6A Solution to the Flower Drawing

Book_samlet.indb 309 2/19/08 8:15:34 PM

311

Book_samlet.indb 310 2/19/08 8:15:34 PM

Incident Management

A successful dynamic test detects failures, and a successful static
test detects defects. However, if the failures, defects, and other

observations made are not managed, the effort is wasted.
The activity of managing what is encountered during test-

ing (and in any other activity for that matter) is called incident
management. It is formally an activity in the configuration man-
agement process, but emphasized here because it is so strongly
connected to testing.

Incident management is about following all incidents from
the cradle to the grave and bringing out and using the information
embedded in the incidents.

7.1 Incident Detection
7.1.1 Incident Definition
This chapter is about incidents. BS 7925-1 defines: An incident
is every (significant) unplanned event observed during testing,
and requiring further investigation.

The standard IEEE 1044 Standards Classification for Soft-
ware Anomalies, uses the term “anomaly” instead of “incident.”
IEEE 1044 defines: “Any condition that deviates from the ex-
pected based on requirements specifications, design documents,
user documents, standards, etc. or from someone’s perception or
experience.” And it adds: “Anomalies may be found during, but
not limited to, the review, test, analysis, compilation, or use of
software products or applicable documentation.”

This chapter is based on the IEEE 1044 and IEEE 1044.1
standards though the term incident will be used, not the term
anomaly.

7
CHAPTER

Contents

7.1 Incident Detection

7.2 Incident and Defect
 Life Cycles

7.3 Incident Fields

7.4 Metrics and Incident
 Management

7.5 Communicating
 Incidents

311

Book_samlet.indb 311 2/19/08 8:15:34 PM

7.1.2 Incident Causes
When a product is being developed, tested, deployed, and maintained, inci-
dents are inevitable. It is human to make mistakes so defects get introduced
during development, requirements change over time, and the environment in
which the product is deployed can evolve as well. In addition to this, people
constantly develop their knowledge about their products and business pro-
cesses and consequently get new ideas for evolving the product.

Testing is the obvious source of incidents, since the idea of testing is to
ferret out things that make us think: “Oops—what was that?” Incidents are
detected in static testing, often in the form of defects, and in dynamic testing,
typically in the form of failures. An incident could be that the actual result is
different from the expected result when a test case is executed. It may also
be ideas that arise during testing, both ideas for new test cases and ideas for
more or different functionality.

There are many synonyms for an “oops,” for example:

 Anomaly
 Bug
 Deviation
 Enhancement request
 Event
 Failure
 Problem

The term “incident” is considered more neutral than most of the others
commonly used and signifies that what we are dealing with is not necessarily
a defect.

Incidents can be raised by all stakeholders within the organization or by
customers. It is important that all incidents are handled via a defined path
and are processed in a controlled way.

7.1.3 Incident Reporting and Tracking
All incidents should be registered or reported. Correct reporting of incidents is
important for many reasons.

The more thorough and uniformly incidents are reported, the better the
possibilities for making the right decisions in the life cycle of the incident.

Good reports enable exploitation of the information about the product
and the processes. The incident reports can be analyzed to find trends in the
failures and defects and subsequently to suggest process improvement.

The incident report can be handled on paper or by the use of a tool. The
latter is by far the more common these days and modern tools provide facili-
ties for communicating incident reports to whose they may concern and to
produce statistics very easily.

Incident Management312

Book_samlet.indb 312 2/19/08 8:15:35 PM

The incident report must follow the incident through its entire life cycle.

7.2 Incident and Defect Life Cycles
When an incident is observed, during testing (either static or dynamic) or
during use, and recognized as such, something must happen. But that
something is NOT an immediate change.

The incident must follow a controlled life cycle.
The life cycle phases defined in IEEE 1044 for an incident are:

 Recognition
 Investigation
 Action
 Disposition

This is illustrated in this simple life cycle model.
It should be possible to trace incidents through their life cycle and follow

their progress. This is done by the use of the incident report that follows the
incident and is updated as the incident passes the life cycle phases.

For each of the stages the incident report must contain the following types
of information according to IEEE 1044:

 Supporting data
 Classification
 Identified impact

The incident life cycle shown here does not indicate the organizational
units involved. The number of organizational units involved can range from
one—in the case of incidents found and resolved during official component
testing performed in the development unit—to many different organizational
units.

Special care must be taken during the life cycles of incidents in the case
of outsourced development and/or testing where organizational units belong-
ing to independent companies spread over large geographical (and cultural)
distances may be involved.

New

ClosedDisposition

Open

Implemented

Approved

Action
(Change)

Recognition

InvestigatedInvestigation

Open

Implemented

Approved

3137.2 Incident and Defect Life Cycles

Book_samlet.indb 313 2/19/08 8:15:35 PM

7.2.1 Incident Recognition
Upon recognition of an incident an incident report must be initialized. All
incidents must be reported meticulously so that they can be investigated,
recreated if needed, and monitored.

The supporting data to provide in the incident report when an incident is
first recognized should encompass:

 Identification of the incident, including unique number, heading,
 trigger event, proposed fix, if possible, and documentation (e.g.,

 screen dumps)
 Identification of the environment, including hardware, software, vendor,
 item in which the incident was seen, and fix description, if any
 Identification of the people involved, including originator and
 investigator
 Related time information, for example, system time, CPU time, and
 wall time as appropriate

The information for classification should encompass:

 Project activity: What were you doing when the incident was
 recognized?
 Project phase: What phase was the project in when the incident was
 recognized?
 Symptom: What did you see when you recognized the incident?

It could also include information about suspected cause, repeatability, and
product status.

Impact information should encompass:

 Severity
 Project schedule
 Project cost

The information concerning impact could also include impact on priority,
customer value, mission safety, project risk, project quality, and society.

IEEE 1044 suggests standard values for the classification and impact
categories. These are discussed in Section 7.3.

An example of how an incident report template may look is given below.
Only the top part and the part concerning the recognition information part
are shown here—the other parts will follow further below in the appropriate
sections.

Note that is a real-life example; the words used are not necessarily IEEE
1044-compliant.

Recognition
supporting data
classification
impact

Investigation
supporting data
classification
impact

Action
supporting data
classification
impact

Disposition
supporting data
classification
impact

Incident Management314

Book_samlet.indb 314 2/19/08 8:15:36 PM

Incident Registration Form

Number

Short title

Software product

Version (n.m)

Status = Created

Registration created by Date & time

Anomaly observed by Date & time

Comprehensive description Include references to attachments, if any.

Observed during Walk-through / Review / Inspection / Code & Build /
Test / Use

Observed in Requirement / Design / Implementation / Test /
Operation

Symptom Operating system crash / Program hang-up /
Program crash / Input / Output / Total product
failure / System error / Other:

User severity Urgent / High / Medium / Low / None

The incident report must now be given over to the right people. For the time
being, the incident is now out of the hands of the testers.

7.2.2 Incident Investigation
The investigation is performed based on the information provided in the
incident report. Formally this is not testing but configuration management.

The investigation should be done by an authority appointed to do just
that. This authority is normally called a CCB (Change Control Board or Con-
figuration Control Board). The CCB must be formed by people with the right
insight and the right power to be able to decide what is going to happen to
an incident. This includes technical, economical, and possibly political insight
and power. The composition of the CCB depends on the extent of the possible
impact of the incident—the wider the impact the more formal the CCB.

During component testing the CCB may be the developer or the developer and
the project manager.

For high-impact incidents found in system testing the CCB may include
the project manager, the product manager, marketing, and the customer.

The investigation is about finding out what is wrong, if anything, and
what should happen next. Many things could be wrong, for example, in the
context of testing; it could be:

3157.2 Incident and Defect Life Cycles

Book_samlet.indb 315 2/19/08 8:15:36 PM

 A wrong wording, caught during a review of a document
 A coding defect found during a walk-through of a piece of source

 code
 A failure found in the integration test
 A wish to expand or enhance the finished product, arising when the
 product is in acceptance testing
 A change required in the code because of the upgrade to a new
 version of the middleware supporting the system (e.g. a new version

 of Microsoft Access, which in certain places is not backward-
 compatible)

If something is indeed wrong the investigation must try to find out what
the impact is and what the cost of making the necessary correction(s) is. It
must also be considered what the cost of not making the correction(s) is.

It is not always a simple matter to perform such an analysis, but it must
be done before an informed decision about what to do can be made.

Possible actions may be:

 Nothing—No failure after all or the failure is too insignificant
 Nothing right now—Changes are postponed
 Changes must be implemented immediately where necessary

The supporting data for the other life cycle phases include primarily

 Identification of the people involved in the investigation, at least
 those responsible for any decisions made
 Related time information

The information for classification should encompass:

 Actual cause—Where have we pinpointed the incident to come
 from a high level?
 Source—In which work product(s) or product component(s) must
 changes be made?
 Type—What type of incident are we dealing with?

The impact information for this phase is the same as for the recognition
phase: severity, project schedule, and project cost as mandatory.

IEEE 1044 suggests standard values for the classification and impact
categories. These are discussed in Section 7.3.

The investigation part of the incident report is shown here.

Recognition
supporting data
classification
impact

Investigation
supporting data
classification
impact

Action
supporting data
classification
impact

Disposition
supporting data
classification
impact

Incident Management316

Book_samlet.indb 316 2/19/08 8:15:37 PM

Status = Investigated

Forwarded by Date & time

Investigated by Date & time

Actual cause Software / Data / Test system / Platform / User /
Unknown

Source Specification / Code / Database / Manual / Plan

Overall problem type Logical / Computation / Interface / Timing / Data
handling / Data / Documentation / Document qual-
ity / Enhancement / Failure caused by previous fix
/ Performance / Other :

Affected CIs

State type from list above

Estimated correction effort

Estimated confirmation test
and regression test effort

Schedule impact High / Medium / Low / None

Cost impact High / Medium / Low / None

Evaluator severity Urgent / High / Medium / Low / None

7.2.3 Incident Action
If any action is to be taken it will be in the form of one or more changes, since
one incident may give raise to changes in more places.

It could well be that an incident encountered during system testing requires a
change in the requirement specification, in the design, in the code, in the user
manual, and maybe even in the project plan.

Specific change requests should be produced for all the objects to be
changed. This makes it easier to followup on the progress of a change through
its life cycle: open, implemented, and approved.

The information for classification should encompass:

 Resolution—When are we going to do something about it?

This part of the incident report from our example is shown on the next
page.

3177.2 Incident and Defect Life Cycles

Book_samlet.indb 317 2/19/08 8:15:37 PM

Status = Action

Forwarded for
decision by

 Date & time

CCB decided Date & time

CCB’s decision Immediate / Eventual change / Deferred / No fix

Observer informed
by

 Date

Change request(s)
opened by

 Ref.: Date & time

All change requests
accepted closed by

 Date & time

Comprehensive
solution description,
if applicable

Include references to attachments, if any.

Total actual change
effort

Total actual test
effort

Solution complete
CCB signature

 Date & time

The testing comes into the incident handling at the time of approval. Retesting
must be done to ensure that corrections have been made correctly, and regression
testing must be performed to ensure that the correction has had no adverse
effects on the areas that were working before the correction.

7.2.4 Incident Disposition
If action has been taken disposition can only happen once ALL the change
requests have been approved. In this case the incident report is closed with
information about how the corrections have been implemented and finally
approved.

The information for classification should encompass:

 Disposition—Why was the incident closed?

The last bit of the example incident report is shown here.

Status = Closed

Close condition Closed / Deferred / Merged / Referred

Reference:

Incident Management318

Book_samlet.indb 318 2/19/08 8:15:37 PM

Status = Closed

Conditions –
if applicable

All new configuration items correctly identified

All new configuration items properly stored

All stakeholders informed of new configuration items

Remarks

Incident observer
informed by

 Date & time

CCB Signature Date & time

7.3 Incident Fields
It can be difficult to get an overview of a large number of incidents and to
be able to see patterns in them. To be able to extract some of the interesting
information about the incidents, it is necessary to be a bit systematic about
the data being gathered.

A classification scheme provides a standard terminology and facilitates
communication and information exploitation within or between projects and
organizations.

IEEE 1044 defines a classification scheme for each of the life cycle phases
for the incident, namely recognition, investigation, action, and disposition, as
indicated in the earlier sections.

The defined classification has a hierarchical structure. This means that
there exist a varying number of layers of possible values for each category.
In the standard each of the classification values has a code in the form of a
unique identification determining its place in the life cycle and the hierarchy.
This numbering scheme also means that organizations can use each other’s
classifications for incident reports even if the actual wording of the values is
different, for example due to usage of the local language.

You can use the IEEE 1044 classification scheme as an inspiration to get
more structure into the incident reporting. If for some reason you need to be
IEEE 1044-compliant (for example, for safety critical software) you need to
be aware of the fact that some of the categories are mandatory and some are
optional.

An extract of the IEEE 1044 classification scheme is shown in Appendix 7A.
Do not learn the classification schemes by heart, but take them to heart

and use them as inspiration for an efficient and useful way of reporting incidents.

7.4 Metrics and Incident Management
There is no reason to collect information about incidents if it is not going to
be used for anything.

3197.3 Incident Fields

Book_samlet.indb 319 2/19/08 8:15:38 PM

On the other hand, information that can be extracted from incident
reports is essential for a number of people in the organization, including test
management, project management, project participants, process improvement
people, and organizational management.

If you are involved in the definition of incident reports, then ask these
people what they need to know—and inspire them, if they do not yet have
any wishes!

The primary areas for which incident report information can be used are:

 Estimation and progress
 Incident distribution
 Effectiveness of quality assurance activities
 Ideas for process improvement

Section 4.3 discusses metrics and measurements in detail.
Direct measurements may be interesting, but they get even more interest-

ing when we use them for calculation of more complex measurements. Like
for other areas of life, measurements work best if we get our relationships
right.

It does not say much if we are told that testing has found 543 faults. But if we
know that we have estimated that we would find approximately 200, we have
gotten some food for thought.

Some of the direct measurements we can extract from incident reports at
any given time are:

 Total number of incidents
 The number of open incidents
 The number of closed incidents
 The time it took to close each incident report
 Which changes have been made since the last release

The incidents can be counted for specific classifications, and this is where
life gets so much easier if a defined classification scheme has been used.

We can count the number of:

 Incidents found during review of the requirements
 Incidents found during component testing
 Incidents where the source was the specification
 Incidents where the type was a data problem

just to mention a few of the possibilities.

Incident Management320

Book_samlet.indb 320 2/19/08 8:15:38 PM

We can also get associated time information from the incident reports and
use this in connection with some of the above measurements.

For estimation and progress purposes we can compare the actual time
it took to close an incident to our estimate and get wiser and better at
estimating next time. We can also look at the development in open and
closed incidents over time and use that to estimate when the testing can be
stopped.

For incident distribution we can determine how incidents are distributed
over the components and areas in the design. This helps us to identify the
more fault-prone, and hence high-risk, areas. We can also determine incident
distribution in relation to work product characteristics, such as size, complexity,
or technology; or we can determine distribution in relation to development
activities, severity, or type.

For information about the effectiveness of quality assurance activities we
can calculate the Defect Detection Percentage of various quality assurance
activities as time goes by.

The DDP is the percentage of faults in an object found in a specific quality assur-
ance activity. The DDP falls over time as more and more faults are detected. The
DDP is usually given for a specific activity with an associated time frame (for
example, DDP for system test after three months’ use).

In the component test 75 faults are found. The DDP of component test is 100%
at the end of the component test activity. In the system test another 25 faults
that could have been found in the component test are found. The DDP of the
component test after the system test is therefore only 75%.

The DDP may fall even further if more component test-related faults are
reported from the customer.

The information extracted from incident reports may be used to analyze
the entire course of the development and identify ideas for process improve-
ment. Process improvement is, at least at the higher levels, concerned with
defect prevention. We can analyze the information to detect trends and ten-
dencies in the incidents, and identify ways to improve the processes to avoid
making the same errors again and again—and to get a higher detection rate
for those we make anyway.

There is more about monitoring and control of the testing process in
Section 4.3.

7.5 Communicating Incidents
Careful incident reporting in written incident reports using an incident
management system facilitates objective communication about incidents and
defects. However, this cannot and should not eliminate verbal communication.

3217.5 Communicating Incidents

Book_samlet.indb 321 2/19/08 8:15:38 PM

Communication about incidents is difficult. The first thing both testers
and developers must be aware of is the danger of “them and us.” We (the
testers) may have a tendency to think that we are better than them: “We” are
good, conscientious, and right while “they” are careless and evil. They (ana-
lysts and developers) may have a tendency to think that they are better than
we are: “They” are smart, fast, and pragmatic while “we” are stupid, unknowing,
and sticklers for the letter of the law.

It is tempting to fall into the trap of irritation and blame. The first and
most important thing for testers and developers is to keep in mind that devel-
opers and others do not make defects on purpose to annoy us, or to tease us,
or even to keep us busy. The next and equally important thing is that testers
and others do not report incidents to gloat and punish but as a their contribu-
tion to a high-quality product.

Examples of what NOT to say:

Tester: “Now you have delivered some …. again – are you never going to get
any better?!”

Developer: “It works on my machine – it must be your setup (or you) that is
wrong!”

Have mutual respect! Managers and employees alike must work on the
spirit of: We are in this together.

Another aspect of incident communication is concerned with what should
be corrected and when. This is where it is important to establish CCBs before
things get hot and to establish them in such a way that their decisions are
trustworthy and respected.

If proper CCBs are not established the decisions about what should
happen to incidents and their relative prioritization can be arbitrary and counter-
productive, or worse.

Questions
1. To which process area does incident management belong?
2. What is an incident?
3. What are some of the other names for an incident?
4. What are the four phases in the incident life cycle?
5. What supporting data should be registered in the first incident
 life cycle phase?
6. In which of the phases in the incident life cycle are the testers not
 directly involved?
7. What are the possible actions for an incident?
8. What is the prerequisite for closing an incident after correction?

Incident Management322

Book_samlet.indb 322 2/19/08 8:15:39 PM

9. What types of information must be given for each phase in the
 incident life cycle?
10. Why is it a good idea to use a classification scheme?
11. What can we use incident information for?
12. What is DDP, and how is it calculated?
13. What are the two most important things to keep in mind when
 communicating about incidents?
14. Why is a CCB necessary?

323Questions

Book_samlet.indb 323 2/19/08 8:15:39 PM

Recognition
Supporting data
Classification
 Project activity
 Analysis
 Review
 Audit
 Inspection
 Code/compile/assemble
 Testing
 Validation
 Support/operational
 Walk-through
 Project phase
 Requirements
 Design
 Implementation
 Test
 Operation and maintenance
 Retirement
 Suspected cause
 Repeatability
 Symptom
 Operating system crash
 Program hang-up
 Program crash
 Input problem
 Output problem
 Failed performance
 Perceived total failure
 System error message
 Other
 Product status
Impact

Investigation
Supporting data
Classification
 Actual cause
 Product
 Test system
 Platform
 Outside vendor
 User
 Unknown
 Source
 Specification
 Code
 Database
 Manual and guides
 Plans and procedures
 Reports
 Standards/policies
 Type
 Logical problem
 Computation problem
 Interface/timing problem
 Data handling problem
 Data problem
 Documentation problem
 Document quality problem
 Enhancement
 Failure caused by fix
 Performance problem
 Interoperability
 Standards conformance
 Other problem
Impact

Appendix 7A Standard Anomaly Classification
IEEE 1044-1993 Standard Classification for Software Anomalies (Extract)

Incident Management324

Book_samlet.indb 324 2/19/08 8:15:39 PM

Appendix 7A Standard Anomaly Classification
IEEE 1044-1993 Standard Classification for Software Anomalies (Extract)

Action
Supporting data
Classification
 Resolution
 Immediate
 Eventual (next release)
 Deferred (future release)
 No fix
 Corrective action
Impact

Disposition
Supporting data
Classification
 Disposition
 Closed
 Deferred
 Merged with another
 Referred to another project

Impact
Impact (applicable to all)
 Severity
 Urgent
 High
 Medium
 Low
 None
 Priority
 Customer value
 Mission safety
 Project schedule
 High / Medium / Low / None
 Project cost
 High / Medium / Low / None
 Project risk
 Project quality
 Societal

325Appendix 7A Standard Anomaly Classification

Book_samlet.indb 325 2/19/08 8:15:39 PM

Note that only the values for the mandatory categories and only one layer
of values are shown in the extract of IEEE 1044 above.

Also note that the impact classification is identical for each of the phases
in the incident life cycle. It must be done by different people for each phase.
In each phase the classification must reflect what the impact is estimated to
be at that point in time based on the available information.

When you estimate the impact it is important to remember that the na-
ture of the fault does not necessarily tell anything about the failure that may
follow.

A spelling mistake may seem like an innocent fault, but on the home page
of a company selling translation and writing services it can be perceived as a
major failure.

A fault that looks really nasty, like a possible pointer list overflow, may
never actually result in a failure, because there is no way the list can get filled
up during the use of the system.

Incident Management326

Book_samlet.indb 326 2/19/08 8:15:40 PM

Appendix 7B Change Control Process
This appendix shows an example of a process diagram for a change control process.
A number of processes are depicted in the diagram as a box with input and output

sections (e.g., “Evaluation of event registration”). All these processes will have to be defined,
preferably described.

The thick lines illustrate the process flow, and the thin lines illustrate the information
flow.

An arch across two lines is used to illustrate “either/or.” A dashed line illustrates “maybe.”
The column to the left holds the name of the role holding the responsibility for the

processes shown in the right column.

327Appendix 7B Change Control Process

Book_samlet.indb 327 2/19/08 8:15:40 PM

E
ve

nt

re
gi

st
ra

tio
n

Th
an

ks
!

U
se

r

I w
on

de
r w

ha
t t

ha
t w

as
?!

Q
A

(T

es
te

r
or

re

vi
ew

er
)

C
re

at
io

n
of

ev

en
t

re
gi

st
ra

tio
n

C
re

at
io

n
of

ev

en
t

re
gi

st
ra

tio
n

A
ns

w
er

 to
 u

se
r

C
C

B

E
va

lu
at

io
n

of
 e

ve
nt

re

gi
st

ra
tio

n

E
va

lu
at

io
n

of
 e

ve
nt

re

gi
st

ra
tio

n

S
ta

tu
s

re
po

rt
s,

et
c.

S
ta

tu
s

1 3

D
ev

el
op

er

A
na

ly
si

s
of

ev

en
t

re
gi

st
ra

tio
n

A
na

ly
si

s
of

ev

en
t

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

O
th

er
 in

fo
2

O
ri

gi
na

l
C

on
fig

ur
at

io
n

Ite
m

N
ew

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

Im
pl

em
en

ta
tio

of
 c

ha
ng

e
Im

pl
em

en
ta

tio
n

C
ha

ng
e

re
qu

es
t

A
pp

ro
va

l o
r

di
sa

pp
ro

va
l

of
 c

ha
ng

e

A
pp

ro
va

l o
r

di
sa

pp
ro

va
l

of
 c

ha
ng

e

V
al

id
at

io
n

of
 c

ha
ng

e
V

al
id

at
io

n
of

 c
ha

ng
e

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

Te
st

m

at
er

ia
l

Te
st

m

at
er

ia
l

54

A
ns

w
er

 to

st
ak

eh
ol

de
rs

A
ns

w
er

 to

C
ha

ng
e

re
qu

es
t

C
ha

ng
e

re
qu

es
t

C
on

fig
ur

at
io

n
m

an
ag

em
en

t i
nf

or
m

at
io

n
st

or
ag

e

R
ej

ec
tio

n
or

 p
os

tp
on

em
en

t
of

 e
ve

nt
 r

eg
is

tr
at

io
n

R
ej

ec
tio

n
or

 p
os

tp
on

em
en

t
of

 e
ve

nt
 r

eg
is

tr
at

io
n

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

6

N
ew

E
ve

nt

re
gi

st
ra

tio
n

E
ve

nt

re
gi

st
ra

tio
n

Th
an

ks
!

Incident Management328

Book_samlet.indb 328 2/19/08 8:15:42 PM

Standards and Test
Improvement Process

There is never a reason to reinvent the wheel—not even in
testing. Many people have worked with testing and related ar-

eas for a long time and a lot of their experience is documented and
available in standards.

The word “standard” may have a gray and dusty ring to
it, but there is nonetheless, a wealth of knowledge in it. All
standards have been written and reviewed by a large number
of very experienced professionals, and they are a great source of
information and ideas for getting started and for getting better.

Process improvement is a discipline that—quite rightly—is
getting more and more attention. The demands on good solid
processes are growing as the complexity and the demands on the
software products and products with software inside are growing.

Process improvement applies to both the entire software
development process and detailed processes, such as the
testing process. It is usually based on a maturity model. The
most widely used maturity models for software development in
general are Capability Maturity Model® (CMMI®) and ISO/IEC
15504 (SPICE).

The two most prominent models specifically for the testing
area of development are the Testing Maturity Model (TMM) and
TPI®. Two other much used models are CTP and STEP.

8
CHAPTER

Contents

8.1 Standards

8.2 Test Improvement
 Process

329

Book_samlet.indb 329 2/19/08 8:16:36 PM

8.1 Standards
8.1.1 Standards in General
The word “standard” means a usage or practice that is generally accepted,
according to Collins Pocket English Dictionary. Standards document experience
gained by many people over a long time.

It is a long and hard job to create a standard. The right people have to
be found, they have to be able to meet, and—more importantly—to agree
enough on the various subjects to determine what “the standard” is. There
is usually also a long period of time set aside for hearings and reviews of the
material before a standard may indeed be approved as a standard. In some
cases this process can take years.

This is part of the reason why standards don’t change very often. They do
change when there is a real need because practices, opinions, and experience
have changed, and it is important when working with standards to take care
that the right version is used and referenced as applicable—versions are often
indicated by the year of the issue of the standard.

A standard is not an expression of a scientific truth, but something made
by humans. This is why we have a number of standards on the same subjects,
for example, testing. And this is why standards sometimes are both internally
inconsistent and inconsistent with each other. Standards also to some extent
disagree; and it can be difficult to determine which, if any, is most “correct.”
Despite this, standards can be a great help.

Standards come from many sources, for example:

 International standards
 National standards
 Domain-specific standards

Standards may also be specific to a specific organization, so-called in-
house standards. Such standards are also very useful as guidelines for work
to be done.

Test-related standards fall in three categories, depending on the type of infor-
mation they provide.

 Quality assurance standards—Telling you that you shall test. An
 example of these standards is the ISO 9001:2001 quality management
 system design.
 Industry-specific—Telling you that you shall test this much. Such
 standards exist, for example, for aviation, railways, fire alarms,
 electronic products, vehicles, nuclear plans, and medical devices.
 Testing standards—Telling you how to actually test.

Standards and Test Improvement Process330

Book_samlet.indb 330 2/19/08 8:16:36 PM

Sometimes we are obliged to follow one or more specific standards be-
cause of the nature of the product we are developing or because of demands
from customers or management.

Even if that is not the case, we as testers should be aware of which standards
are relevant for us and from where we can get guidelines and inspiration.

Remember though, that whatever you do, don’t do it because a standard
says so. Do it because it serves your business.

8.1.2 International Standards
The two most prominent sources of internationally recognized standards are:

 ISO, International Organization for Standardization
 IEEE, Institute of Electrical and Electronics Engineers

ISO and IEEE recognize each other, and some standards are common to
the two organizations. These standards have the identical numbers in the ISO
and, respectively, IEEE series.

8.1.2.1 ISO Standards
ISO is a network of the national standards institutes of 157 countries, on
the basis of one member per country, with a central secretariat in Geneva,
Switzerland.

The name ISO is derived from the Greek isos, meaning “equal,” in order
for the name to always be ISO whatever the national language is.

ISO is a nongovernmental organization, but occupies a special position
between the public and private sectors.

International standardization began in the electrotechnical field: The
International Electrotechnical Commission (IEC) was established in 1906.
In 1946, delegates from 25 countries met in London and decided to create a
new international organization, of which the object would be “to facilitate the
international coordination and unification of industrial standards.” The new
organization, ISO, officially began operations on February 23, 1947.

ISO has developed hundreds, if not thousands, of standards. Those of
most interest to testers may be:

 ISO 9000:2005—Quality management systems
 ISO 9126—Product quality (four different parts from four different

 years)
 ISO 12207—Information technology, software life cycle processes

www.iso.org

8.1 Standards 331

Book_samlet.indb 331 2/19/08 8:16:36 PM

8.1.2.2 IEEE Standards
The IEEE is a nonprofit organization based in the United States. The association
has more than 370,000 members in over 160 countries.

The full name of the IEEE is the Institute of Electrical and Electronics
Engineers, although it is referred to by the letters I-E-E-E and pronounced
Eye-triple-E.

The IEEE formed in 1963 with the merger of the AIEE (American Insti-
tute of Electrical Engineers, formed in 1884), and the IRE (Institute of Radio
Engineers, formed in 1912).

IEEE has issued over 900 active IEEE standards and more than 400 in
development on areas ranging from aerospace systems, computers and
telecommunications to biomedical engineering, electric power and consumer
electronics among others. Those of most interest for testers may be:

 IEEE 610:1991—Standard computer dictionary
 IEEE 829:1998—Standard for software test documentation
 IEEE 1028:1997—Standard for software review and audit
 IEEE 1044:1995—Guideline to classification of anomalies
 IEEE/ISO 12207:1995—Standard for software life cycle processes

8.1.3 National Standards
Many countries have their own standardization organization, like British
Standard (BS) in the United Kingdom, an Dansk Standard (DS) in Denmark.
These organizations issue their own local standards, and they may also
recognize some of the international standards.

An example of a national standard of interest for testers is:

 BS 7925-2:1998—Software testing, software component testing

8.1.4 Domain-Specific Standards
Many regulatory standards mandating the application of particular testing
techniques exist. Some of them (but probably not all) are listed here:

 IEC/CEI 61508: Functional safety of electrical/electronic/
 programmable safety-related systems
 DO-178-B: Software considerations in airborne systems and
 equipment certification
 pr EN 50128: Software for railway control and protection systems
 Def Stan 00-55: Requirements for safety-related software in defense
 equipment
 IEC 880: Software for computers in the safety systems of nuclear
 power stations

Standards and Test Improvement Process332

Book_samlet.indb 332 2/19/08 8:16:37 PM

 MISRA: Development guidelines for vehicle-based software
 FDA: American Food and Drug Association (Pharmaceutical
 standards)
 ECSS: European Cooperation on Space Standardization

One of the difficulties with the above standards is that they are not di-
rectly aimed at software. Each of them has its origin in a specific field, into
which software has only relatively recently penetrated. It would be nice if we
had one software-specific standard dealing with the aspects of how much and
how to test the software depending on risk analysis. But since that is not the
case we will have to make do with the existing standards.

If we are not making software for a discipline dealt with in a specific stan-
dard we can always use IEC 61508; this is the most generic of the standards
listed above.

8.2 Test Improvement Process
Maturity is as important for software development as it is for people. When
we are immature we can easily find ourselves in a situation where we lose
control and are unable to solve the problems—problems we might even have
created ourselves.

The demands on the software industry are growing as pervasive soft-
ware thunders ahead. More and more products include software, and both
embedded software and pure software products are becoming more and more
complex. The potential number of faults in the software is hence increasing
and so is the cost of finding and removing them—not least keeping in mind
that the cost of fault correction increases by a factor 10 for each phase the
faults “survive” in the work products.

The solution to the growing demands is more professional software
development with focus on the entire product and hence the entire
development process. Software development needs to be able to stay in
control, foresee problems, and prevent them or mitigate them in a mature
way. Software development needs to grow up, improve, and thereby become
a mature industry—and so does testing.

Process improvement is based on the understanding that software
development is a process and that processes can be managed, measured, and
continuously improved.

An important assumption is that the quality of the software produced using a
specific process is closely related to the quality of the process.

 This does not mean that it is impossible to produce excellent soft-
ware using a useless procedure—or indeed the other way around—but
the probability of producing good software rises significantly with the
quality of the process.

3338.2 Test Improvement Process

Book_samlet.indb 333 2/19/08 8:16:37 PM

The urge for improvement can come from many places both outside and
inside the organization, and both from below and above.

 Customers or suppliers may push or even demand proof of maturity
 and ongoing process improvement directly. More indirectly they may

 express requirements in terms of quality criteria and time-to-market,
 whose fulfillment requires a certain maturity in the organization.
 Within the organization managers are pressed to obey constraints

 and to provide growth in the organization.
 Finally employees may well be fed up with constant firefighting

 and impossible deadlines requiring them to work overtime and cut
 corners.

Military organizations usually require their suppliers to be at minimum
CMMI® level 3.

8.2.1 Process Improvement Principles
Process improvement is hard work. More than anything the software quality
is dependent on the abilities of the people working in the organization—both
the individuals and the teams. People write the processes and the methods
and techniques to be used. People follow the processes and use the methods
and techniques.

Everything needs to fit together to be efficient and effective.
There are a number of described approaches to process improvement,

including:

 Plan–Do–Check–Act
 IDEAL: Initialization, Diagnosis, Establishing, Acting, Learning
 (from SEI)
 IMPROVE: Initiate, Measure, Prioritize and Plan, Define and Re-
 define, Operate, Validate, and Evolve (from the ISTQB syllabus)
All these approaches are cyclic as continuous process improvement must

be. The following figure illustrates the process improvement process, after
the initial phase where the decision to improve is taken, the business objec-
tives and goals defined, the stakeholders identified, and the improvement
model chosen.

Tools

procedures
methods
techniques

Learning

Actions

Deployment

Adjustment

Standards and Test Improvement Process334

Book_samlet.indb 334 2/19/08 8:16:39 PM

Organizations performing process improvement must:

 Produce process descriptions including methods and techniques
 Introduce the processes to the people working in the organization

 and provide adequate training
 Request and support deployment of the processes as appropriate
 Determine the maturity of the processes and their deployment
 Use this information to adjust the processes and/or introduce them

 again to the people
 Repeat ad libitum

Tools may be used to support the activities, but tools can not provide pro-
cess improvement by themselves.

A process improvement project must be run like any other project. Activi-
ties must be prioritized—both in the short term and in the long run. Activities
must be planned with defined goals, activities, resources, time, and budget.
The responsible person must follow up on the progress. And last but not least:
It is important to report on the successes.

Process improvement is not easy. Many organizations fail their first at-
tempt and that impedes any following attempts. Research has been made into
what makes organizations succeed or fail.

This research shows that the organizations most likely to succeed are those
where the software process improvement is incorporated in the organization’s visions
and strategy at the highest level.

It is important that top management understand that process improve-
ment is organizational development and that it involves change management.
Process improvement is first and foremost about people.

It is hard work that requires continuous focus, but it is also very reward-
ing work. No organizations I have met have ever wished themselves back to
the “bad old days” at level 1 or 2 once they had reached level 3.

8.2.1.1 A Few Process Improvement Results
More and more assessments are being performed all over the world, and
companies of all sizes embark on structured process improvement. What
most of these companies are asking for before starting a process improvement
project is the possible return of investment.

Return on investment (ROI) can be expressed in a number of ways; the
most common is of course in economical terms, such as cost and savings, but
measures like defects per 1,000 lines of code and employee satisfaction can
also be used. The greatest impediment regarding measuring ROI is lack of
initial measures. Amazingly many organizations have no clue how much their
work costs them.

3358.2 Test Improvement Process

Book_samlet.indb 335 2/19/08 8:16:40 PM

SEI has collected data from more than 500 organizations using CMM® as the
basis for their process improvement. A few of these results are presented here
as appetizers.

The following graph shows a typical development in the average and
distribution of the performance of a process for organizations moving from
maturity level 1 to 5.

At level 1 the average project is far over the target for the estimated time
of completion, and the dispersion is high.

The dispersion decreases as the maturity increases, and the average proj-
ect actually hits the target. As the maturity increases the target is also moved
to the left. Mature organizations perform in a more predictable way, and they perform
better than more immature organizations.

The table below shows the employees’ perception of six aspects of the
performance of their organization as the organizations moved from CMM®
level 1 to CMM® level 3.

138 individuals CMM® 1 CMM® 2 CMM® 3

Meet schedule 40 55 80

Meet budget 40 55 65

Product quality 75 90 100

Staff productivity 55 70 85

Customer satisfaction 75 70 100

Staff morale 25 50 60

11

22

33

44

55

Standards and Test Improvement Process336

Book_samlet.indb 336 2/19/08 8:16:41 PM

One hundred and thirty-eight people were asked to state their opinion
of the aspects on a five-step scale ranging from “nonexistent” to “excellent.”
The table shows how many percentages answered one of the two highest
possibilities.

The percentages of employees answering “good” or “excellent” increases
with the maturity level.

One small exception is “customer satisfaction” where the high-answering
percentage drops to level 2. This could well be because the organizations have
started to answer “no” to impossible tasks up-front and maybe also because
they are starting to ask the customers for such information as more precise
requirements.

8.2.2 Process Maturity Models in General
One of the more reliable ways to determine the actual maturity of a software-
producing organization is by using a certified software process assessment tool-
set. An assessment toolset consists of two basic parts: a model and a method.
The model is a description of the domain that shall be assessed, and the met-
hod describes how to perform the assessment in a verifiable and valid way.
The model usually also works as a map guiding organizations towards higher
maturity levels.

Many assessment toolsets have been produced during the last two decades,
but the most important are CMM®, BOOTSTRAP, CMMI®, and ISO 15504.
These have gotten much inspiration from one another as the “family tree” here
shows. BOOTSTRAP is a European toolset now overtaken by ISO 15504.

Maybe—one hopes—they will all come together in one standard some-
time in the future.

®

®

®

®

3378.2 Test Improvement Process

Book_samlet.indb 337 2/19/08 8:16:41 PM

-Defect prevention
-Technology change management
-Process change management

-Quantitative process management
-Software quality management

-Organization process focus
-Organization process definition
-Training program
-Integrated software management
-Software product engineering
-Inter-group coordination
-Peer review

-Requirement management
-Software project planning
-Software project tracking and oversight
-Software subcontract management
-Software quality assurance
-Software configuration management

8.2.2.1 CMM®
The CMM® was the first assessment toolset, officially released in 1991.

The CMM® model defines five maturity levels ranging from 1 to 5. Level 1
is the lowest; work in an organization at level 1 is adhoc or chaotic. Level 5 is
the highest level; organizations at level 5 are continuously optimizing their
processes to make the best fit between the business, the people, and the
processes.

The CMM® is staged. This means that each maturity level has a number
of associated key process areas (KPAs). CMM® KPAs distributed on maturity
levels are shown here:

®

Standards and Test Improvement Process338

Book_samlet.indb 338 2/19/08 8:16:42 PM

From a testing point of view the CMM® is not adequate. The concept of
testing maturity is not addressed and the model does not include testing prac-
tices as a process improvement area. Testing issues are addressed in some of
the key process areas, but not in a satisfactory manner.

CMM® is still widely used, but CMMI® is moving in fast.

8.2.2.2 CMMI®
CMMI® Version 1.02 was published in 2000, and Version 1.2 was published in
2006. CMMI® is developed and supported by the Software Engineering Institute,
like CMM®.

CMMI® has two representations, namely staged and continuous. Guide-
lines are offered on how to choose between the models and how to tailor the
chosen model to specific needs.

The staged CMMI® representation is similar to CMM® V. 1.1. Maturity
levels in the staged representation apply to an organization’s overall process
capability and organizational maturity. The result of a staged assessment is
one number: the maturity level.

The capability levels in the continuous representation can be reached for
each process area individually. There are six capability levels, numbered 0
through 5. The result of a continuous assessment is a profile showing the
capability level for each process area.

CMMI® operates with process areas. These are divided into four main
groups, namely process management, project management, engineering, and
support.

Organizational Innovation
and Deployment

Organizational
Process Performance

Organizational
Process Focus

Organizational
Process Definition

Organizational
Training

Quantitative
Project Management

Integrated Project
Management for IPPD

Risk Management

Project Planning

Project Monitoring
and Control

Supplier Agreement
Management

Requirements
Development

Technical
Solution

Product Integration

Verification

Validation

Requirements
Management

Causal Analysis
and Resolution

Decision Analysis
and Resolution

Configuration
Management

Process and Product
Quality Assurance

Measurement
and Analysis

Process Management Project Management Engineering Support

2

3

4

5

3398.2 Test Improvement Process

Book_samlet.indb 339 2/19/08 8:16:52 PM

CMMI® is rapidly establishing itself worldwide. The CMMI® continuous
representation is gaining ground over the staged representation.

From a testing point of view CMMI® has more focus on verification and
validation than CMM®, but testing maturity is still not addressed explicitly.

8.2.2.3 ISO 15504
The ISO 15504 standard for maturity assessments has long been known un-
der the working name of SPICE, but it was finally released in 2003. ISO 15504
is mostly used in Europe and the Far East.

ISO 15504 is a continuous model (i.e., the capability is assessed for each of
the defined process areas individually in an identical way). The result of an
assessment is a capability profile.

The reference model defined in SPICE is two-dimensional. One dimension
is the capability dimension with six capability levels. The other dimension is
the process dimension structured in three process categories.

Each of the process categories is refined into a number of subcategories
(called processes). The full structure is shown here.

PRIMARY
CUS Customer Supplier
CUS.1 Acquisition
CUS.2 Supply
CUS.3 Requirements Elicitation
CUS.4 Operation

Supporting

Capability
dimension

0 Incomplete

1 Performed

2 Managed

5 Optimising

3 Established

4 Predictable

Primary Organisational

Process
dimension

Standards and Test Improvement Process340

Book_samlet.indb 340 2/19/08 8:16:53 PM

ENG Engineering
ENG.1 Development
ENG.1.1 System requirements analysis
ENG.1.2 Software requirements analysis
ENG.1.3 Software design
ENG.1.4 Software construction
ENG.1.5 Software integration
ENG.1.6 Software testing
ENG.1.7 System integration and testing
ENG.2 System and software
 maintenance

SUPPORT
SUP Support
SUP.1 Documentation
SUP.2 CM
SUP.3 Quality assurance
SUP.4 Verification
SUP.5 Validation
SUP.6 Joint review
SUP.7 Audit
SUP.8 Problem resolution

ORGANISATIONAL
MAN Management
MAN.1 Management
MAN.2 Project management
MAN.3 Quality Management
MAN.4 Risk Management

ORG Organisation
ORG.1 Organisational alignment
ORG.2 Improvement process
ORG.3 Human resource management
ORG.4 Infrastructure
ORG.5 Measurement
ORG.6 Reuse

ISO 15504 has much more focus on the development life cycle, and hence
on testing, than do CMM® and CMMI®. This can be seen in the process category
engineering where the subcategory development is further broken down into
detailed development activities, including the processes software testing and
software integration and testing.

8.2.3 Testing Improvement Models
This section begins with a word of warning. An old saying goes: “One should
stick to one’s own class.” This is to some extent the case for organizations
with regard to maturity. Research has shown that the maturity of organizations
influences their ability to work together. The results are shown in the matrix
here.

55

44

33

22

1

1 2 3 4 5

3418.2 Test Improvement Process

Book_samlet.indb 341 2/19/08 8:16:54 PM

In general organizations at maturity level 1 are difficult to work with for
organizations at level 1 and 2, and at level 4 and 5—even though the reasons
are different. A level 3 organization can work with a level 1 organization, but
it is not the best constellation.

The higher the maturity on both sides the better the cooperation, and
more importantly, the more equal the maturity the better the cooperation.

This is worth keeping in mind for test organizations wanting to improve.
The next section is about test-specific improvement models. Test organiza-
tions can mature using these models, but the best result for the company as a whole
is, if the different departments synchronize their process improvements.

8.2.3.1 TMM (Testing Maturity Model)
Dr. Ilene Burnstein, Institute of Technology, has said: “Testing is a critical
component of the software development process. Organizations have not
fully realized their potential for supporting the development of high-quality
software products. To address this issue we are building a Testing Maturity
Model (TMM) to serve as a guide to organizations focusing on test process
assessment and improvement.“

The Testing Maturity Model and TMM are service marks of the Illinois
Institute of Technology

The following is based on two articles by Ilene Burnstein, Taratip
Suwan-Nasart, and C.R. Carlson, Illinois Institute of Technology, published in
U.S. Air Force magazine Crosstalk, August and September 1996 describing the
TMM.

The Software Engineering Institute’s Capability Maturity Model® (CMM®)
does not adequately address testing issues. The TMM is built to overcome
this.

The model is structured like the CMM®, but specifically addresses issues
important to test managers, test specialists, and software quality assurance
staff. Like CMM® the TMM contains a set of maturity levels, a set of recom-
mended practices at each level of maturity, and an assessment model that will
allow organizations to evaluate and improve their testing process.

The TMM can be used by a number of stakeholders:

 Internal assessment team to identify the current testing capability
 state

 Upper management to initiate a testing improvement program
 Development teams to improve testing capability
 Users and clients to define their roles in the testing process

Standards and Test Improvement Process342

Book_samlet.indb 342 2/19/08 8:16:54 PM

The founders of the TMM point out that not only is the TMM structurally
similar to the CMM®, it must be viewed and utilized as a complement to the
CMM®, since mature testing processes depend on general process maturity.

In the development of the TMM a historical model provided in a key
paper by Gelperin and Hetzel has been used. Their model describes phases
and test goals for the periods of the 1950s through the 1990s.

Beizer’s evolutionary model of the individual tester’s thinking process
in many ways parallels the Gelperin-Hetzel model. Its influence on TMM
development is based on the premise that a mature testing organization is
built on the skills, abilities, and attitudes of individuals that work within it.
Beizer’s phases in a tester’s mental life are shown here.

The initial period in the Gelperin and Hetzel model is described as
“debugging-oriented.” During that period most software development
organizations had not clearly differentiated between testing and debugging.
Testing was viewed as an activity to help remove bugs.

In the “demonstration-oriented” period, a primary testing goal was to
demonstrate that the software satisfied its specifications. Testing and
debugging were still linked in efforts to detect, locate, and correct faults.

The “destruction-oriented” period focused on testing as an activity to de-
tect implementation faults. Debugging was a set of separate activities needed
to locate and correct faults.

In the “evaluation-oriented” period, testing became an activity that was
integrated into the software life cycle. The value of review activities was
recognized. The view of testing was broadened and its goals were to detect
requirements, design, and implementation faults.

The Gelperin-Hetzel historical model is culminated by what they call a
“prevention-oriented” period, which reflects the optimizing level 5 of both
the CMM® and the TMM. The scope of testing is broadly defined and includes
review activities. A primary testing goal is to prevent requirements, design,
and implementation faults. Review activities now support test planning, test
design, and product evaluation.

Phase 4 = a mental discipline that results in low-risk software
without much testing effort

Phase 3 = reduce the perceived risk of not working to an
acceptable value

Phase 2 = show that the software doesn´t work

Phase 1 = show that the software works

Phase 0 = support and debugging

3438.2 Test Improvement Process

Book_samlet.indb 343 2/19/08 8:16:54 PM

The attributes of a mature testing process, according to TMM, are:

 A set of defined testing policies
 A test planning process
 A test life cycle
 A test group
 A test process improvement group
 A set of test-related metrics
 Tools and equipment
 Controlling and tracking
 Product quality control

The TMM has two major components, a set of maturity levels and an
assessment model.

TMM Maturity Levels
Each of the levels prescribes a position in the testing maturity hierarchy. The
characteristics of each level are described in terms of testing capability and
organizational goals. They identify the areas where an organization must
focus to improve its testing process. The hierarchy of testing maturity levels
and goals is shown here.

Level 1: Initial

Level 2: Phase Definition

• Institutionalize basic testing techniques and methods
• Initiate a test planning process
• Develop testing and debugging goals

Level 3: Integration

• Control and monitor the test process
• Integrate testing into the software life cycle
• Establish a technical training program
• Establish a software test organization

Level 4: Management and Measurement

• Software quality evaluation
• Establish a test measurement program
• Establish an organization-wide review program

Level 5: Optimization, Defect Prevention, and Quality Control

• Test process optimization
• Quality control
• Application of process data for defect prevention

Standards and Test Improvement Process344

Book_samlet.indb 344 2/19/08 8:16:55 PM

Level 1 is the initial level. There are NO maturity goals at this level.
Testing in level 1 organizations is typically a chaotic process, where tests

are developed in an ad hoc way after coding is done. Testing and “debugging”
are mixed to get the bugs out of the software. If there is a test objective, it is
to show that the software works.

Each level above level 1 has a structure, much like the structure in
CMM®:

 A set of maturity goals. The maturity goals identify testing improve-
 ment goals that must be addressed to achieve maturity at that level.
 Testing capabilities for each level reflect the goals.

 Supporting subgoals. They define the scope, boundaries, and
 needed accomplishments for a particular level.
 Activities, tasks, and responsibilities. They are necessary to achieve

 the goals associated with each level, and they have an influence on
 the implementation and adaptation.

 Responsibilities are assigned for these activities and tasks to three
 groups that we believe represent the key participants in the testing
 process: managers, developers and testers, and users and clients. In
 the model they are referred to as “the three critical views.”

The component called the “critical views” is added to the TMM in order
for the testing process’s key participants to be included in process maturity
growth.

The TMM is staged like the CMM® and requires that all of the capabilities
at each lower level be included in succeeding levels.

Levels

Maturity GoalsTesting Capability

Maturity Subgoals

Activities / Tasks / Responsibilities

Critical Views

Implementation
and Organization

Adaptation

Manager Developer /
Tester

User/Client

3458.2 Test Improvement Process

Book_samlet.indb 345 2/19/08 8:16:56 PM

Level 2 is called “phase definition” and the maturity goals at this level are:

 Develop testing and debugging goals
 Initiate a test planning process
 Institutionalize basic testing techniques and methods

According to the structure each of the goals has a number of subgoals. It
will be too much to go through the entire TMM model here, but we will take
the second goal at level 2 as an example.

The complete set of maturity subgoals for the level 2 goal “initiate a test planning
process” is:

 An organization-wide test planning committee must be established
 with funding.
 A framework for organization-wide test planning policies must be
 established and supported by upper management.
 A test plan template must be developed, recorded, and distributed to
 project managers and developers.
 Test work products must be defined, recorded, and documented.
 Project managers must be trained in the test planning process.
 A mechanism must be put in place to integrate user-generated
 requirements as inputs into the test plan.
 Basic planning tools must be evaluated and recommended, and
 usage must be supported by management.

TMM Assessment Model
The assessment model in the TMM is composed of the following items:

 The questionnaire: This will contain questions that are designed to
 determine a level of testing maturity.

 The assessment procedure: This will give the assessment team guidelines on
 whom to interview and how to collect, organize, analyze, and interpret
 the data collected from questionnaires and personal interviews.
 The Team Selection and Training Procedure: The assessment procedure will be
 carried out by a trained assessment team internal to the organization
 being assessed.

TMM and CMM®
TMM is developed as a complement to the CMM®. Organizations interested in
assessing and improving their testing capabilities are likely to be involved in
general software process improvement. To have directly corresponding levels
in both maturity models would logically simplify these two parallel process
improvement drives.

Standards and Test Improvement Process346

Book_samlet.indb 346 2/19/08 8:16:56 PM

Research shows that an organization striving to reach the “ith” level of the
TMM must be at least at the “ith” level of the CMM®. In many cases, a given
TMM level needs specific support from key process areas in its corresponding
CMM® level and the CMM® level beneath it. These key process areas should be
addressed either prior to or in parallel with the TMM maturity goals.

A TMMI model aligned with the CMMI® model is under development.

8.2.3.2 TPI (Test Process Improvement Model)
The TPI model is a dedicated test maturity model. It was developed in Holland
in 1997 by Tim Koomen and Martin Pol.

The model was first developed because the authors needed a model to
support their test-focused process improvement activities and were unable to
find an existing model that satisfied their needs.

TPI is built on extensive testing experience and suggests the following
improvement: After initial awareness of the general improvement ideas, the
actual improvement work starts with an assessment. The result of this is used
to define improvement actions. After planning and implementation of these
actions, a new assessment can be performed to define the next actions. Test
process improvement is an ongoing, never ending process.

The authors of TPI point out that test process improvement is only
one of a much larger group of aspects that influence the total result of system
development. Test process improvement should be aligned with other
initiatives, such as general software process improvement and the total qual-
ity model (TQM).

TPI Structure
Like the other models, TPI has a well-defined structure. This is shown in the
following figure.

Key areas

Levels

Checkpoint Improvement suggestions

Test
Maturity
Matrix

3478.2 Test Improvement Process

Book_samlet.indb 347 2/19/08 8:16:56 PM

The model defines a number of key areas and for each of these it defines a
number of levels. For each level for each specific key area a number of check-
points are defined. These checkpoints are used to determine if a specific level
is achieved for the specific key area. To assist the test process improvement,
a number of improvement suggestions are also defined for each specific level
for each key area.

There are 20 key areas in all in the TPI, and these cover the total test pro-
cess. The areas are:

 Test strategy
 Life-cycle model
 Moment of involvement
 Estimating and planning
 Test specification techniques
 Static test techniques
 Metrics
 Test tools
 Test environment
 Office environment
 Commitment and motivation
 Test functions and training
 Scope of methodology
 Communication
 Reporting
	 Defect management
 Testware management
 Test process management
 Evaluating
 Low-level testing

Martin Pol, one of the authors of TPI, has previously defined four corner-
stones for the activities in a test organization in his TMap concept.

The cornerstones are:

 Life cycle
 Techniques
 Infrastructure and tools
 Organization

Each of the TPI key areas is assigned to a cornerstone.

L

OI

T

Standards and Test Improvement Process348

Book_samlet.indb 348 2/19/08 8:16:57 PM

TPI Levels
As mentioned earlier, each key area has a number of levels. The levels are
called A, B, C, and D. The levels are ordered so that it is always true that A <
B < C < D in terms of time, money, and quality. The levels are individually
named per key area.

The checkpoints are cumulative: If checkpoints for level A are met, then
level A is achieved; to achieve level B all the checkpoints for both level A and
level B must be met; and so on up to level D.

It should be noted that not all key areas have all levels.
The following table shows an overview of all the key areas and the levels

defined for each. The levels are distributed on a scale ranging from 0 to 13.
The relative position of the levels for the key areas is an expression of the de-
pendencies between the key areas defined in the model.

The table also shows that the levels are grouped into three overall levels—
controlled, efficient, and optimizing—vaguely corresponding to the CMMI®
levels.

3498.2 Test Improvement Process

Book_samlet.indb 349 2/19/08 8:16:58 PM

Let us take an example for one key area: test strategy.

 Cornerstone: L (life cycle)
 Description: The test strategy has to be focused on detecting the
 most important defects as early and as cheaply as possible. The test
 strategy defines which requirements and (quality) risks are covered

 by what tests. The better each test level defines its own strategy and
 the more the different test level strategies are adjusted to each other,
 the higher the quality of the overall test strategy.

 Levels:

All other key areas have similar specifications. Appendix 8.A provides a
full list of the specifications for all the levels for all the key areas.

TPI Assessment
As mentioned earlier, each level for each key area has a number of check-
points to be met. The number of checkpoints varies from key specific level to
key specific level.

There is no graduation applied in the model. This means that all check-
points have to be fully met before a key area reaches a specific level.

In a TPI assessment the fulfillment of the checkpoints for level A is
evaluated for each key area. For the areas where all the level A checkpoints are
met, the fulfillment of the level B checkpoints is then evaluated – and so on
until no more levels are achieved.

The checkpoints may be quite difficult to understand and a TPI assess-
ment should be carried out by an educated assessor.

The checkpoints for level A for the key area test strategy are listed here.
Test strategy for single high-level test:
 A motivated consideration of the product risks takes places, for
 which knowledge of the system, its use, and its operational manage-

 ment is required.

 There is a difference in test depth, depending on the risk and, if
 present, the acceptance criteria: Not all subsystems are tested
 equally thoroughly and not every quality characteristic is tested

 (equally thoroughly).

D: Combined
strategy for all test
and evaluation
levels

C: Combined
strategy for high-
level tests plus
low-level tests or
evaluation

B: Combined
strategy for high-
level tests

A: Strategy for
single high-level
test

D: Combined
strategy for all test
and evaluation
levels

C: Combined
strategy for high-
level tests plus
low-level tests or
evaluation

B: Combined
strategy for high-
level tests

A: Strategy for
single high-level
test

Standards and Test Improvement Process350

Book_samlet.indb 350 2/19/08 8:16:59 PM

 One or more test specification techniques are used, suited to the
 required depth of a test.
 For retests also, a (simple) strategy determination takes place,
 in which a motivated choice of variations between “test solutions

 only” and “full retest” is made.

If you wonder how to interpret the first checkpoint, it may be translated
to something like:

 Do you perform a risk analysis?
 Do you have rationales for the risks?
 Do the people involved in the risk analysis know the system and the

 ways it is going to be used?

The result of a TPI assessment is a test maturity matrix, which indicates
how each of the 20 key areas has scored. This is the maturity profile of the
test organization. The maturity profile shows the strong areas and the weak
areas and provides the first indication of where to set in with improvement
actions.

An example of a test maturity matrix is shown below. The light blue color-
ing is the result profile from an assessment.

TPI Process Improvement
The whole idea of TPI is test process improvement. The test maturity matrix
should be used as the leverage for this.

The figure below shows an extract of a test maturity matrix. The light
color indicates the result of the assessment.

3518.2 Test Improvement Process

Book_samlet.indb 351 2/19/08 8:16:59 PM

The darker coloring indicates the target for the improvement activities.
The aim is get the profile more smooth over the individual key areas.

The checkpoints defined for the levels for the key areas serve as an aid for
improvements, because these checkpoints must be fulfilled. Furthermore the
model includes a number of improvement suggestions (hints and tips) for
each level for each key area.

It can be seen from the test maturity matrix above that the key area test
strategy has already reached level A. The next target is to reach level B.

The improvement suggestions for test strategy level B are summarized here.

Combined strategy for high-level tests:

 Obtain insight into what the different tests do
 Indicate possible risks
 Try to find obvious “holes” or duplicate testing
 Appoint a test coordinator
 Consider establishing an acquisition inspection (entry criteria for

 test)

8.2.3.3 CTPs (Critical Testing Processes)
In the beginning of this book we established that testing is process, and
that the testing process can be broken down into more and more detailed
processes.

The quality of the description of a given process and the way the process
is performed influence the quality of the work done. Following well-described
and well-fitting processes in a contentious way provides better results than do
other combinations, such as following processes in a sloppy way (or not at all)
or following ill-fitting processes.

The American Rex Black has introduced the concept of critical testing
processing as a guideline for test process improvement.

The basis assumption is that some of the testing processes we can specify
and follow are more critical than others. The criteria for a process to be de-
fined as critical are that the process is:

 Repeated frequently
 Highly cooperative
 Visible to peers and superiors
 Linked to process success

The CTP model is a highly flexible model, and the aspects in it should be

Standards and Test Improvement Process352

Book_samlet.indb 352 2/19/08 8:17:00 PM

tailored to the specific context in which it is being used. This includes that the
organization using the model may identify its own specific challenges, and its
own way of describing a process and defining the importance of the processes
and hence the order of their improvement.

The critical processes must fit into the development model in which the
testing is a support activity. Each development process must be linked to one
or more testing processes and vice versa.

The 12 Critical Processes
Rex Black has defined the 12 processes he considers to be most critical. These
are:

1. Testing
2. Establishing context
3. Quality risk analysis
4. Test estimation
5. Test planning
6. Test team development
7. Test system development
8. Test release management
9. Test execution
10. Bug reporting
11. Result reporting
12. Change management

 For each of these processes the model explains what the heading covers
and why the specific process is important.

One example is the first of the critical processes: the testing process.
This process encompasses the activities:

 Planning: Determining what testing to do in the context
 Preparing: Designing and building the tests and forming the test

 team(s)
 Performing: Getting the test object, making it executable and test-

 able, and testing it
 Perfecting: Reporting findings and guiding the process

This process is important, because the result of performing it well will be
reducing costs by finding important bugs, providing useful information about
less important bugs, reducing risks by identifying what works and what
doesn’t, and giving management essential information.

Another example is the test estimation process. This process encompasses the
activities:

3538.2 Test Improvement Process

Book_samlet.indb 353 2/19/08 8:17:00 PM

 Identifying the testing tasks, resources, and dependencies through a
 work breakdown structure
 Drawing on test and project team wisdom
 Putting together a budget
 Selling the estimate to management

This process is important because the result of performing it well will be
balancing the cost and time required for testing against project needs and
risks, forecasting the tasks and duration of testing in an accurate and action-
able manner, and demonstrating the return on the testing investment.

Assessment of the Testing Process
The CTP model includes a guide for assessing the existing test process and its
subprocesses in an organization. The assessment process itself may be tailored
to the specific context.

The following top five points should however be assessed for the processes:

 Effectiveness
 Efficiency
 Pervasion
 Information provision
 Improvement

The findings for these points can be substantiated by both quantitative
and qualitative measurements.

Examples of relevant metrics are shown here.

Quantitative Qualitative

Effectiveness Defect detection
percentage

When and by whom are
the worst bugs found

Efficiency Return on the testing
investment

Does testing seem
worthwhile

Pervasion Coverage of for example
requirements and risks

Time of test involvement in
the development lifecycle

Information provision Number of reports
provided to stakeholders

Test report utility

Improvement Results of previous
improvement activities

Perceived better quality
and satisfaction

 The measurements must be tailored to reflect the performance of each of
the critical testing processes being assessed.

Standards and Test Improvement Process354

Book_samlet.indb 354 2/19/08 8:17:00 PM

Improving Critical Processes
The result of a CTP assessment is a profile showing which processes are strong
and which are weak. Taking the organizational needs into consideration this
provides a prioritized recommendation of which process to improve at this
particular point in time. There is no inherited recommendation for the order
in which testing processes should be improved in the CTP model.
 The improvement of the testing processes according to the CTP model is
more or less identical to any process improvement task. A description of pro-
cess improvement principles is found in Section 8.2.1.

8.2.3.4 STEP (Systematic Test and Evaluation Process)
The last model we are going to look at is in fact the first. The testing
methodology called the STEP (Systematic Test and Evaluation Process) was
developed by Drs. David Gelperin and William Hetzel in 1986. STEP was
developed based on American National Standards Institute (ANSI) 829: Test
Documentation Standard and 1008: Unit Test Standard. IEEE has since taken
over these standards; this is why we now refer to IEEE 829, but it is the same
standard.

At the time the STEP presented an entirely new concept, namely a test
process to run parallel with the development and support validation of the
completeness of each phase of development. The STEP model defines four
test levels: acceptance test, system test, integration test, and unit test. It is
a concept that holds to this day, as can seen from this book and virtually all
other testing literature.

Before the STEP, testing was seen as something performed after the system
was fully assembled. The STEP expanded that original definition of testing to
encompass three main steps:

1 Plan the test strategy (develop a master test plan and associated
 detailed test plans)

2. Acquire testware (define test objectives, design and create test
 plans)

3. Measure (execute the tests, ensure that tests are adequate, and
 monitor the process itself)

The test planning activities are based on the ANSI Standard 829 requiring
a master test plan and a detailed test plan for each of the test levels outlined
in the master test plan. The detailed test plans are to be produced during the
corresponding development phase.

In the test acquisition activity the STEP describes how test cases are to be
produced to validate each requirement in a requirements-based testing
approach for the higher test levels. At the lower test levels test cases are

3558.2 Test Improvement Process

Book_samlet.indb 355 2/19/08 8:17:01 PM

produced to validate the design. The test cases are to be produced parallel
with the development activities and serve as extra quality assurance of
what the STEP refers to as inventory items (work products). Traceability ma-
trices between test cases and inventory items must be produced.

The acquisition activity includes a risk analysis for prioritization of the
test cases and the creation of test procedures, test data and tools, if any.

During test execution and measurement a test log is required, and inci-
dent reports must be made when incidents are discovered. At the conclusion
of the testing a test report must be made; the findings and experiences made
during the test must be analyzed and reported. The STEP outlines that the
results of these activities, the documents, test data, and tools used are to be
preserved for future use.

The STEP also covers maintenance testing including regression test.
In short we can say that the STEP supports the modern understanding of

a good test process in that it promotes and supports:

 That testing starts at the beginning of the development life cycle
 That testers and developers work together
 A requirements-based test approach that testers use
 That tests are used as requirements and usage models
 That testware design leads software design
 That defects are detected earlier or prevented all together
 That defects are systematically analyzed

The STEP is not a process improvement model in the sense discussed above.
It presents a test process, whose introduction in an organization is the
improvement. The way the STEP process is used may be improved by auditing
(assessing) the process and analyzing the measures collected. These measures
include:

 Test status over time
 Test requirements or risk coverage
 Defect trends
 Defect density
 Defect removal effectiveness
 Defect detection percentage (test effectiveness)
 Defect introduction, detection, and removal phase(s)
 Cost of testing

More quantitative factors may include:

 Defined test process utilization
 Customer satisfaction

Standards and Test Improvement Process356

Book_samlet.indb 356 2/19/08 8:17:01 PM

Questions
1. What is a “standard”?
2. What may the sources of standards for use be?
3. Which are the two most widely known standard “families”?
4. Which standard covers product quality aspects?
5. Which standard covers software review and audit?
6. What is the disadvantage of domain-specific standards?
7. Why is there a growing need for software process improvement?
8. Where can the pressure for process improvement come from and why?
9. What are the basic principles in process improvement?
10. Which role do tools have in process improvement?
11. Which companies are most likely to succeed with process improvement?
12. What characterizes more mature organizations?
13. What does CMM® mean?
14. What are the names of the five maturity levels in CMM®?
15. What is a key process area?
16. Which two representations are defined for CMMI®?
17. What are the four groups of process areas in CMMI®?
18. How is testing represented in CMMI®?
19. What is the ISO number of the SPICE model?
20. What are the three process categories defined in SPICE?
21. What does TMM mean?
22. What are the phases in a tester’s mental life according to Beizer’s?
23. What are the five levels in TMM?
24. How is the structure for a level in TMM?
25. What does the TMM assessment model consist of?
26. How do TMM and CMM® relate to each other?
27. What does TPI mean?
28. What is the structure of the TPI model?
29. How many key areas does TPI define?
30. What are they?
31. What are the groups into which the levels are organized?
32. What is done in a TPI assessment?
33. What is the result of a TPI assessment?
34. How is the result used for process improvement?
35. What does CTP mean?
36. What makes a process critical?
37. What critical processes does the model define?
38. What should be assessed in a CTP assessment?
39. What does STEP mean?
40. What is the STEP based on?
41. What are the three main steps in the STEP?
42. How is improvement addressed in the STEP?

357Questions

Book_samlet.indb 357 2/19/08 8:17:01 PM

Appendix 8A Definition of Levels
in the TPI Model
CS = Cornerstone; levels are not defined for blank key area/level cells.

CS Key Area Level A Level B Level C Level D

I Test tools

Planning and
control tools

Execution and
analysis tools

Extensive
automation
of the test
process

I
Test
environment

Managed and
controlled test
environment

Testing in the
most suitable
environment

“Environment-
on-call”

I
Office
environment

Adequate and
timely office
environment

L Test strategy
Strategy for
single high-
level test

Combined
strategy for
high-level
tests

Combined
strategy for
high-level
tests plus low-
level tests or
evaluation

Combined
strategy for
all test and
evaluation
levels

L
Life-cycle
model

Planning,
specification,
execution

Planning,
preparation,
specification,
execution, and
completion

L
Moment of
involvement

Completion of
test basis

Start of test
basis

Start of
requirements
definition

Project
initiation

T
Estimating
and planning

Substantiated
estimation and
planning

Statistically
substantiated
estimation and
planning

T
Test specifica-
tion tech-
niques

Informal
techniques

Formal
techniques

T
Static test
techniques

Inspection of
test basis

Checklists

T Metrics
Project metrics
(product)

Project metrics
(process)

System
metrics

Organization
metrics (> 1
system)

Standards and Test Improvement Process358

Book_samlet.indb 358 2/19/08 8:17:02 PM

CS Key Area Level A Level B Level C Level D

O
Commitment
and motiva-
tion

Assignment
of budget and
time

Testing
integrated in
project orga-
nization

Test-
engineering

O
Test functions
and training

Test manager
and testers

(Formal)
methodical,
technical and
functional
support,
management

Formal inter-
nal quality
assurance

O
Scope of
methodology

Project spe-
cific

Organization-
specific

Organization
optimizing,
R&D activities

O
Communica-
tion

Internal com-
munication

Project com-
munication
(defects,
change
control)

Communica-
tion within
organization
about the
quality of the
test pro-
cesses

O Reporting Defects

Progress
(tests,
products,
costs, time,
milestones,
defects with
priorities)

Risks and
recommend-
dations,
substantiated
with metrics

Recommen-
dations have
a software
process
improvement
character

O
Defect man-
agement

Internal defect
management

Extensive
defect man-
agement with
flexible report-
ing facilities

Project defect
management

O
Testware
management

Internal
testware man-
agement

External
management
of test basis
and object

Reusable
testware

Traceability
system re-
quirements to
test cases

O
Test process
management

Planning and
execution

Planning,
execution,
monitoring,
and adjusting

Monitoring
and adjusting
within
organization

O Evaluation
Evaluation
techniques

Evaluation
strategy

O
Low-level
testing

Low-level
test life-cycle
(planning,
specification,
and execution

White-box
techniques

Low-level test
strategy

359Appendix 8A Definition of Levels in the TPI Model

Book_samlet.indb 359 2/19/08 8:17:02 PM

Book_samlet.indb 360 2/19/08 8:17:02 PM

Testing Tools and Automation

The purpose of using tools for testing is to get as many as pos-
sible of the noncreative, repetitive, and boring parts of the test

activities automated. The purpose is also to exploit the possibility
of tools for storing and arranging large amounts of data.

There are a huge number of testing tools on the market, and
it is growing fast. Have a look in Appendix 9A! Every testing tool
automates some testing activities to a certain degree. No single
tool automates everything completely. But there are testing tools
for all testing activities, even though most testers think about test
execution tools when test automation is mentioned.

Test automation is not an easy task. A company can be more
or less ready for test automation. It requires a certain level of
maturity to be able to use tools efficiently. Tools do not provide
more maturity; they should be implemented to support the exist-
ing maturity.

It also requires a certain amount of courage to engage in test
automation, both courage to choose and to refuse. It is important
to select tools with great care so that they don’t end up as
“shelfware.”

It may be difficult to choose, but that is peanuts compared to
getting a tool introduced in an organization. And keeping it
running efficiently is perhaps even more difficult.

9
CHAPTER

Contents

9.1 Testing Tool
 Acquisition

9.2 Testing Tool
 Implementation
 and Deployment

9.3 Testing Tool Categories

361

Book_samlet.indb 361 2/19/08 8:17:03 PM

9.1 Testing Tool Acquisition
Many tools are bought in excitement. We find a tool—on an exhibition or in
a magazine – and we are immediately convinced that this tool is the solution
to all our problems. The tool is used for a short while; it appears that it was
not quite what we expected; and sooner or later it ends up on a shelf and is
completely forgotten about. Sound familiar?

In a professional organization it is important to treat the investment in
(testing) tools as the serious decision it is. Tools are usually expensive, and
even if they are not expensive to buy, they are expensive to implement and
maintain in the organization.

Acquisition and introduction of a tool in a company requires organiza-
tional considerations. It is not something you just rush in and do (like fools!);
conscious decisions about what to do and how to do it in the company must
be made before the work can commence.

The acquisition should include the following activities:

 Tool selection preparation
 Tool evaluation
 Selection of the winner

9.1.1 Tool or No Tool?
The first thing we must do when the idea of automation occurs is find out
what it is we are trying to achieve with the tool. What exactly is the problem?

Introduction of a testing tool or testing automation is not necessarily the
answer to all problems.

If the problem is that we are not entirely sure how to perform a task or an
activity, it may be tempting to get a tool to help us, but it is usually not a good
idea. Only work that is well-specified is appropriate for automation.

Work that requires creativity is not a candidate for automation either. We
cannot get a computer to be creative and think outside of the box.

Automation may help solve problems caused by:

 Work that is to be repeated many times
 Work that it is slower to do manually
 Work that it is safer to do with a tool

Once the problem is described and wellunderstood, we can consider how
to solve it. There may be a number of alternative solutions, including the
acquisition of a tool.

Maybe it does seem like a tool is the best solution, and in that case we can
go on with the selection preparation.

A fool with a tool
is still a fool

Testing Tools and Automation362

Book_samlet.indb 362 2/19/08 8:17:03 PM

9.1.2 Tool Selection Team
The next step is to establish a team to perform the evaluation and selection of
the tool. This team must be as broad as possible and include representatives
for all potential stakeholders for the test tool.

The team must be composed of a team leader and representatives for all
potential users of the test tool, including developers, professional testers, re-
sponsible for tools, responsible for process, and future product users.

The team members cannot be expected to be assigned full-time to the
selection and evaluation task. It must, however, be ensured that they are
available when meetings are held and take an active part in the work.

9.1.3 Testing Tool Strategy
The long-term testing tool strategy in the organization must be considered if
it is already in place, or it must be produced if it is not.

The point to make clear is how a new tool will fit into the overall goals for
the company (e.g., with regard to general process improvement or the achieve-
ment of a certain level of capability or a specific certification). This may have an
impact on the type of tool to choose.

It must also be clear how large a part of the organization is going to use
the new tool. Will it be all so that we should choose a solution that covers
the entire company; or will it be on a project level so that we should choose a
solution that only covers the needs in a single, independent project? This
decision may have far-reaching consequences both with regard to direct cost
and with regard to time to be spent.

At some point it is of course also important to establish who is going to
pay for a new tool and for the continued usage and maintenance.

9.1.4 Preparation of a Business Case
In a business case we compare the cost of a solution with the benefits the
solution is going to bring us.

The cost of selecting, implementing, and maintaining a tool is usually
significant. It includes expenses for:

 Selection
 Acquisition (list price minus possible discounts, open source,
 or own development)
 Licenses
 Tailoring
 Implementation
 Training
 Tool usage
 Maintenance of automated testware
 Tool maintenance

9.1 Testing Tool Acquisition 363

Book_samlet.indb 363 2/19/08 8:17:03 PM

Some of these expenses are measured directly in money; others come from
time being spent by employees; both must be considered in the calculation.

On the other side of the business case equation, we have the benefits.
Benefits from test automation are rarely, if ever, measurable in actual money.
They come from savings we obtain because the tool helps us perform the tasks
faster and with fewer mistakes.

For test execution tools the cost/benefit depends very heavily on how of-
ten the automated tests will be executed, as illustrated here.

Tests that are only executed a few times
during the entire lifetime of the product
are usually not worth spending auto-
mation resources on.

On the other hand, it may be well
worth automating the tests that are
executed many times, for example, tests
used for extensive regression testing of
high-risk areas.

It is of course possible to have a mix-
ture of manual and automated tests.

9.1.5 Identification of Tool Requirements
A testing tool is a software product, and just like all other software products it
should satisfy a number of requirements. It is part of the selection preparation
to identity the requirement applicable for the tool to be implemented.

First of all the tool needs to have some functionality. We must define
what we require the tool to do. This must of course be consistent with the
processes we are going to automate. The integration with other tools is another
important part of the functionality we need to specify. If the tool is going to have
Web access, this must also be explicitly and thoroughly described.

Connected to the functional requirements we have the nonfunctional
requirements. These should at least include aspects of performance, usability,
availability, and maintainability for the tool.

There are many aspects of performance, and these aspects may have a
greater impact on everyday life than you may think. It may, for example, be
the time it takes to execute a complete regression test suite, or the volume of
something that the tool can handle.

Usability is a measure for how easy a test tool is to use. It may include
aspects like intuitive interface, help facilities and user documentation, com-
patibility with existing procedures, and tailoring facilities.

Cost

Number of test runs

Automated

Manual

Testing Tools and Automation364

Book_samlet.indb 364 2/19/08 8:17:04 PM

Availability describes when we can use the tool. If the tool is running on a
server somewhere this can be fairly unpredictable.

We should also consider availability of support. Is it possible to get sup-
port in our own language during normal working hours, or do we have to call
somewhere in the middle of night and try to explain our problems in a foreign
language?

Maintainability is interesting, for example, in terms of upgrades. How of-
ten do we get new versions? Will they be backwards-compatible? What about
our own tailoring?

The environmental requirements or constraints are requirements forced on
us from the environment around our organization. It can be in the form of
existing products that the testing tool must be able to cooperate with or a
specific platform that we need to use.

The last thing to consider is project requirements or constraints. They are
the usual ones, namely resources, time, and money. They form the foundation
of the requirements tower and they need to be “strong” enough to carry the
tower. If not we must reduce the product quality requirements or increase the
project requirements.

9.1.6 Buy, Open-Source, or Do-It-Yourself
There are advantages as well as disadvantages, to buying a standard tool,
getting an open-source tool, or developing one’s own tool. This is a consider-
ation worth making, and it may be based on the aspects shown here.

Buy Open-Source Do-It-Yourself

Some tailoring must
always be foreseen,
either to the tool or to
the processes in the
company, or both.

The tool may be changed
and enhancements
should be shared.

The tool can be made exactly
as the company wants it
(provided it knows what it
wants).

The price is usually
easy to calculate.

The tool is free but there
may be license fees to
pay.

It may be even extremely
difficult to estimate the final
cost.

Usually the payment
must be made within
a relatively short
period of time.

No immediate price
needs to be paid.

The development and hence
the “payment” can be done at
the company’s own pace.

Do what you do best
– that is what the
suppliers do.

The quality depends on
the exposure, history,
and use of the tool.

Maybe you are the best suited
to develop your own tool.

9.1 Testing Tool Acquisition 365

Book_samlet.indb 365 2/19/08 8:17:04 PM

The lists are by no means exhaustive, but it may be used for inspiration
for the considerations.

If a company decides to develop its own tool, this must be undertaken like
any other development project (i.e., at least as seriously as a project with an
external customer). This will not be discussed further.

We need to be aware that many tools come into existence because devel-
opers or testers have an urgent need for tool support for a specific task and are
able to develop a tool themselves. This is often done as “hidden” work, (i.e.,
the time spent is not registered anywhere). Such tools may be very efficient
and they may be taken into consideration when selecting a more official tool
solution. It must be evaluated if such tools are sufficiently documented to
build on, and if they can handle the scaling involved in spreading the use to
a larger user group.

9.1.7 Preparation of a Shortlist of Candidates
Many sources for information about testing tools exist, for example, articles,
suppliers’ Web pages, other companies, exhibitions, and research reports.

Based on the first information a number of possible candidates are
identified by a fairly coarse evaluation method based on some really
essential requirements like the platform on which a given tool may run.

 It can be useful to supplement the evaluation with a look at the supplier.
The supplier is “the family-in-law” that we will have to live with for a long
time, so investigate for example:

 The supplier’s employees—Do they match ours?
 The supplier’s own use of the tool
 The supplier’s financial status
 The supplier’s focus—Is testing tools a niche?
 The supplier’s acquaintances
 The supplier’s reputation
 The supplier’s support facilities

9.1.8 Detailed Evaluation
After this first selection a stricter and stricter evaluation is made until only
two candidates are left in the field.

It is important that the evaluation group agrees on how the evaluation is
to be made and precisely what is significant in the selection. An evaluation
method includes:

 Description of the scale for the evaluation of fulfillment of the
 requirements, for example
	 Fully, Almost, Partly, Not
	 From 0 to 100%

Testing Tools and Automation366

Book_samlet.indb 366 2/19/08 8:17:04 PM

 Description of the selection criteria, based on the fulfillment
 evaluation, for example
 All priority 1 requirements fulfilled at least 80% and at least 50%
 of the priority 2 requirements fulfilled

It is a good idea to define different criteria for different selection phases,
typically more strict as the field narrows.

After some evaluation rounds the list of candidates has been reduced from
a number of possible test tools to fewer and fewer candidates by the deployment
of the defined evaluation method. In the end there should be only two left.

9.1.9 Performance of Competitive Trials
The two finalists should undergo a detailed evaluation that should include at
least one demonstration and preferably a trial period, so that the tools may be
tried out under as realistic circumstances as possible.

Scenarios that reflect the functional requirements should be set up and
run through. At the same time the nonfunctional requirements can be tested.
Performance aspects should be evaluated under realistic circumstances, that
is, both locally and over great distances, if that is the need, and in an environment
with the “normal” load, not just on an isolated test machine.

It may be important to investigate if a tool can handle the volumes that
the company or the project may have to handle. Volume may also be a ques-
tion of a large number of users and/or a large number of platforms possibly dis-
tributed over large distances. It should not only be the company’s current situ-
ation that is included in an evaluation; a testing tool should be able to cope
with the development in the company for at least the foreseeable future.

For testers it should not be difficult to test a tool they are going to use
themselves. Even if we are really eager to start using testing tools it is worth
remembering that advertising material and salespeople may color things a bit.

The last thing to do for now is to

select the winner!
9.2 Testing Tool Introduction and Deployment
Now the tool has been selected. The real challenge, however, is to make the
tool become part of everyday life, and to keep it alive long enough to profit on
the investment.

The introduction or implementation of a tool in an organization is an
organizational change project. The principles of process improvement in
general are discussed in Section 8.2.1.

3679.2 Testing Tool Introduction and Deployment

Book_samlet.indb 367 2/19/08 8:17:04 PM

Management commitment is essential for the implementation to be a
success. An implementation process must be described and followed closely to
avoid the tool ending up as “shelfware,” as so many tools unfortunately do.

An implementation process should include the following activities:

 Make necessary adjustments
 Perform a pilot project
 Assess the pilot project
 Produce a rollout strategy
 Make the rollout happen
 Follow up on the rollout

The necessary resources, both in terms of people, time, money, and train-
ing must be provided and sustained until the usage of the new tool is an en-
graved part of everyday working life.

The activities needed in implementation of new ways of working are
described in detail for the introduction of static testing in Section 6.4. The
principles are the same for the introduction of a tool, and the activities are
only summarized here.

The roles that must be in place to make the tool implementation a success
are:

 The sponsor
 The target group
 The champions
 The change agents

Furthermore the introduction of a tool requires a tool custodian. This is a
technical person who is responsible for the setup and maintenance of the tool.
He or she provides internal help and support with technical issues and can be
responsible for contact to the supplier of the tool for second-level support.

9.2.1 Testing Tool Piloting
A pilot project should always be performed for the tool before we commit to
implementing it across all projects.

It may be that there are some adjustments or tailoring to do, before the
pilot can start. One hopes that the tool that has been chosen complies with
the existing processes, but there may be smaller discrepancies.

This tailoring can be anything from making adjustments to make the tool
comply completely to the processes to using the tool as it is, that is, tailoring
the processes to the tool. Once the tool is bought the easiest and most future-
safe thing to do is the latter – tailoring the processes to the tool.

Testing Tools and Automation368

Book_samlet.indb 368 2/19/08 8:17:05 PM

There are a number of reasons for performing a small-scale pilot project.
First of all we need to verify the business case and ensure that the benefits of
the usage of the testing tool can really be achieved.

A goal for the pilot project is also to get some experience in the usage of
the testing tool. The pilot should enable us to identify further adjustment need
to the processes and to the tool, as appropriate. The different tools of all the
different tool types support different detailed processes. They also require
interfaces with other tools and other processes, for example, configuration
management of testware. Finally a pilot can help us refine the estimate for the
actual costs and benefits for the implementation.

A pilot should take between three and six months and be followed closely.

9.2.2 Testing Tool Rollout
The rollout of the testing tool should be based on a successful evaluation of
the pilot project. Rollout normally requires a great involvement of all the peo-
ple carrying roles in the test tool implementation, not least the users of the
testing tool, the target group.

A rollout strategy that suits the nature of the organization must be
defined. A “big-bang” rollout, where everybody starts using the tool at a given
point in time, works in some organizations. In other organizations a gradual
implementation, where the tool is deployed as the need arises, will work
better.

No matter how the rollout is done the most important activity at this
point is to support the new users as the rollout takes place. We must be pre-
pared to

 Support the users
 Support the users
 Support the users
 Support the users

until the usage of the testing tool is a completely integrated part of the work.

9.2.3 Testing Tool Deployment
A testing tool is a part of the test environment for our tests, and in many
ways like any other (software) product. The tools we use should be kept under
proper configuration management like the rest of the test environment and
other testware.

It is important to be able to register with which version of a tool specific
tests have been prepared and/or executed. There is more about the concepts of
configuration management, especially for testers, in Section 1.1.3.

3699.2 Testing Tool Introduction and Deployment

Book_samlet.indb 369 2/19/08 8:17:05 PM

9.3 Testing Tool Categories
9.3.1 Testing Tool Classification
Many tools for the support of software development are available, and the
selection is growing every day.

It is therefore impossible to list specific tools. The purpose of this section
is to present different types of testing tools and give an idea of the advantages
and possible disadvantages of them.

Tools may be classified to get a better overview of the tools available. There
are different classification schemes, for example according to:

 The test activity they support
 The test level the tools primarily support
 The types of failures or defects they can find
 The test approach or test technique they support
 The purpose they have
 The domain to which they are applied
 Who the primary users of the tools are

The last categorization is used here.
Tool support exists for the following primary users:

 All testers
 Test management tools, including configuration management tools

 Test analysts and technical test analysts
	 	Test design tools
 Test data generation tools
 Test oracles
 Simulation and emulation tools
 Test execution tools
 Keyword-driven automation tools
 Comparison tools
 Fault-seeding and fault-injection tools
 Web tools

 Technical test analysts only
 Static analysis tools
 Dynamic analysis tools
 Performance testing tools

 Programmers (or technical test analysts writing and
 maintaining test scripts)
	 Debugging, tracing, and troubleshooting tools

Testing Tools and Automation370

Book_samlet.indb 370 2/19/08 8:17:05 PM

Not all the tools in the areas listed here are testing tools in a narrow sense,
but they are all useful in testing and hence included in this overview. It must
be stressed again here, that debugging is NOT a test activity, though tightly
connected to testing, especially low-level tests.

9.3.2 Tools for All Testers
9.3.2.1 Test Management Tools
Test management, like all management, includes risk analysis, estimation,
scheduling, monitoring and control, and communication. Test management
is discussed in Chapter 3.

Test management tools cover these activities and support the project man-
agement aspects of testing. These tools can typically be used for registration of
test activities, estimation, scheduling of tests, logging of results, and analysis
and reporting of progress.

Most test management tools provide extensive reporting and analysis
facilities.

Test management tools can support the handling of test documentation,
such as plans, test specifications, and test procedures, and even traces be-
tween test cases and requirements.

The advantage of test management tools is that they can assist in the
management of all the activities in testing. They can provide an overview of
the testing task and show progress.

There are no direct disadvantages of test management tools. They are,
however, often wedged between other tools, such as project management
tools and configuration management tools. Most test management tools
provide some of the facilities that these other tools also provide. There are
hence often many interfaces and/or redundancies in connection with oth-
er tools used in the organization. The reason for this is—to some extent at
least—is that no single management tool provides all the needed features for
software development management.

Another reason for the confusion between tools is that the borderlines
between project management, configuration management, and test management
are often blurred or not defined. This has got to do with the maturity of the
organization. The more mature an organization is, the more the individual
process areas are understood and clearly defined, and the easier it is to define
what the tools should do and not do.

3719.3 Testing Tool Categories

Book_samlet.indb 371 2/19/08 8:17:06 PM

Tool Support for Configuration Management
Configuration management is identification, storage, change management,
and reporting of configuration items. Configuration management for testers
is discussed in Section 1.1.3.

Configuration items are all work products, product components, and
components that we want to control. This includes testware, such as test plans,
test specifications, and test environments including tools and test results;
and it includes requirements. Requirements are essential for testing, and it is
therefore of special interest to testers how requirements are managed.

Configuration management tools are used to support the configuration
management activities. The main features of these tools are:

 Identification and storage of items
 Traceability between items
 Incident reporting and management of the life cycle of faults
 Reporting and analysis

Traceability and incident management are important features. Require-
ments and test cases should be traced to each other, and traceability tools allow
the link between test cases and their corresponding test coverage items to be
recorded. Changes to requirements must be communicated to testers and
appropriate consequential changes implemented, for example, in related test
cases. This is facilitated by trace information.

Changes to configuration items should always be initiated by an incident
report, and the main supplier of incident reports is testing. There is therefore
a strong interface between testing and configuration management. Only a
few configuration management tools include full change management, but
a large number of more or less independent tools exist for this. Incident
management tools (also known as defect tracking tools) may also have
workflow-oriented facilities to track and control the allocation, correction,
and retesting of incidents.

The main advantage of these tools is that they support the cumbersome
and difficult information administration associated with the configuration
management activities. Configuration management is difficult, if not impossible,
to perform without some sort of tool support.

Most configuration management and incident management tools
support analysis and reporting of configuration management information.
This facilitates communication of the facts about how the development and
testing processes are working.

Testing Tools and Automation372

Book_samlet.indb 372 2/19/08 8:17:16 PM

The pitfall of these tools is redundancy in features and information and/
or the need for transfer of data between tools, caused by unclear borders
between tools, as described earlier.

9.3.3 Tools for Test Analysts and Technical Test
 Analysts
9.3.3.1 Test Design Tools
Test design tools support the creation of test specifications. They can analyze
a specification of the product, often expressed as a model in a formal way, and
generate high-level test cases and possibly test procedures or scripts based on
this analysis.

This type of testing tool can, for example:

 Derive high-level test cases from formally specified requirements,
 often managed by the same tool
 Generate test cases based on the specification of a model, for example,
 UML or state machines
 Generate input for test cases based on input models, for example,
 input distribution specifications
 Derive high-level test cases from actual source code

The advantage is that test cases are systematically and comprehensively
derived from the basis documentation. If the basis documentation is produced
in accordance with specified rules, no test case will be missed, and they will
all be correct.

The pitfall is that these testing tools only do half (or less) of the work. They
cannot specify the expected results, so we have to elaborate the test input
provided by the tool into test cases with the definition of the expected result
and preconditions.

The test design tools require very formally formatted basis documentation,
and that can be regarded as both an advantage and a disadvantage.

9.3.3.2 Test Data Preparation Tools
Test input data preparation tools support:

 Selection (e.g., from an existing database)
 Creation
 Generation
 Manipulation
 Editing

3739.3 Testing Tool Categories

Book_samlet.indb 373 2/19/08 8:17:16 PM

of test data for use in setting up preconditions for test procedures and
individual test cases.

Some of these tools are data tool-dependent, while the most sophisticated
can deal with a range of file and database formats.

Test data can be selected and extracted from live data and scrambled to hide
person-sensitive information. This enables tests to be performed on real data,
something that can be essential for systems in, for example, the public sector.

A test data preparation tool is able to extract live data from the tax authorities’
database according to specific selection criteria for test runs of the implementation
of a new tax law. The criteria may be 100 families with one income and at least
three children, 100 people over 80 years of age with an income over a certain
amount, and the 40 people with the highest income in a specific city. The tool
scrambles the information that can identify the people in the test data (e.g.,
Social Security number, before the data may be used).

The advantage is that these tools make it possible to handle great volumes
of data.

Usage of this type of testing requires good configuration management of
testware to identify which specific versions of the object, the test specifica-
tion, and the test data belong to each other.

The pitfall here is that the tools may create too much useless data, if
selection is not planned carefully.

9.3.3.3 Test Oracles
A test oracle is a special concept in test automation; it is used to determine
expected results from inputs. Some say that the best test oracle is the tester,
studying the test basis documentation and deriving the expected result from
this. This is, however, sometimes not possible for time and/or cost reasons.

Automated test oracles are tools that can generate the expected result for
specific input and hence facilitate the creation of test cases. Such “oracles” are
hard to find. In principle they must do exactly the same as the object under
testing and may therefore seem redundant.

One of the situations where an oracle can be found and can be very use-
ful is when an old system is being replaced by a new one providing the same
functionality. This is seen more and more often when old legacy systems are
replaced with systems using new technology, for example, Web access. In such
a case test input may be given to the old system and the result be regarded as
the expected result for the new system.

Oracles can also be created in situations where nonfunctional requirements
can be disregarded and a system simulating the functionality only can be
developed at a much lower cost. This is especially the case where the real
system has very strict performance requirements.

Testing Tools and Automation374

Book_samlet.indb 374 2/19/08 8:17:16 PM

The advantage of oracles is that they make it possible to generate the
expected results much faster than if we had to derive them manually. The
use of oracles requires strict control over the oracle and the other testware.

The disadvantage of oracles is that their usage can give us a false sense of
reliability. There is a risk that we repeat faults in the old system, or between an
oracle system and the real system. There is also a risk of not getting sufficient
test coverage.

9.3.3.4 Simulation Tools and Emulation Tools
Simulators are used to support tests where necessary code or other systems
are either unavailable or impracticable or even dangerous to use. I for one
would rather not test the software intended to handle a nuclear meltdown
under real-life conditions.

Test harnesses and drivers fall into this category of tools. They are used
where components or other test objects cannot be executed directly. It can be for
testing of a component in isolation, embedded software without a user inter-
face, or execution of many unrelated automated test scripts.

Some testing tools on the market provide harness and driver facilities,
especially component testing tools. Very often, however, these tools are
homemade and tailored precisely to needs. The principle in stubs and drivers
is illustrated.

A special type of simulators is called emulators because they are used to
mimic hardware to which the software under testing interfaces.

Simulation tools are almost always bespoke systems made for a specific
assignment.

Component
under
test

Test
driver

Test stub 2Test stub 1

3759.3 Testing Tool Categories

Book_samlet.indb 375 2/19/08 8:17:16 PM

The advantage of these tools is that they make otherwise impossible or
difficult tests possible. These tools can save us a lot of money.

Emulators can make it possible to test in “slow motion,” and they can act
as debuggers as well.

These tools, like most other testing tools, require good configuration
management of the testware, something that may be considered an advantage.

The disadvantages include that the use of these tools may give a false sense
of reliability—after all the simulators or emulators may be wrong. It may also
be that the usage of such tools “hide” defects, for example, performance and
other time-related defects. Simulators and emulators can also be rather ex-
pensive to produce and set up, and the cost must be balanced carefully with
the benefits.

Another disadvantage of these tools can be that they require that the
testers can code or have access to people who are able to do the coding. In
practice this is not a problem, since these tools are often used in testing being
performed in close connection with the coding.

9.3.3.5 Test Execution Tools
This type of testing tool goes under many names: test execution tools, or
test running tools, or capture and replay tools, and is probably the most
widespread category of testing tool.

These tools are primarily used for automation of regression testing. They
can execute test scripts much faster and more reliably than human beings,
and they can therefore reduce test execution time when tests are repeated
and/or allow more tests to be executed.

All the tools of this category work according to the same basic principles,
namely:

 Capture: A recording of all the tester’s manual actions and the
 system’s responses into a test script
 Control points: A number of checkpoints added to the script by
 the tester during the capture
 Playback: Automatic (re)execution of the test script

Test execution tools exist for graphical user interface, GUI, and for
character-based interfaces. For GUI applications the tools can simulate mouse
movement and button clicks and can recognize GUI objects such as windows,
fields, buttons, and other controls.

When a script has been captured once, it may be executed at any given
time again. If the software under testing reacts differently from what was
expected at the inserted checkpoints, the execution will report a failure. It is
usually also possible to log information during execution.

Testing Tools and Automation376

Book_samlet.indb 376 2/19/08 8:17:17 PM

Test scripts are captured in a specific scripting language. In newer versions
of these tools it has become possible to get access to the scripts that have been
captured. These are often in a C or Visual Basic like code, and this offers the
possibility for editing the scripts, so that, for example, forgotten operations,
further control points, or changed values, may be added.

Experience shows that if the scripts are written from scratch, rather than
captured, and good and systematic development principles are used, the
scripts will be more maintainable. More and more of these tools are therefore
used as test execution tools of coded scripts, rather than capture/playback.

The advantage of these tools is that a lot of manual test execution can be
done automatically. This is especially the case in iterative development and
other development projects where a large number of regression testing are
needed. These tools are indispensable in development where “frequent build
and smoke test” principles are used. Builds can be made in the evening, and
automated test suites can be set to run overnight. Testing results will then be
ready in the morning.

The use of test scripts requires good configuration management to keep
track of which versions of the test objects, test data, and test scripts belong
together. Again a blessing (maybe) in disguise.

The pitfall for these tools is that it can be rather expensive to establish and
maintain the test scripts. The requirements, specifications, and code undergo
changes in the course of the development, especially in iterative development.
This must be carefully considered in connection with the estimation of the
continuous maintenance of the test scripts.

Another pitfall is that the work with the test scripts requires program-
ming skills. If the necessary skills are not available, the use of test execution
tools may be very cumbersome and inefficient.

At the same time it must be kept in mind that test scripts written by a
programmer or tester are just like any other (software) product: made by
humans and therefore not perfect. Defects are also introduced in test scripts,
and test scripts should therefore be tested and corrected when defects are
identified. The earlier this is done the better since fewer defects in the test
scripts reduce the possible uncertainty as to whether a failure is caused by a
defect in the test script or indeed in the product under test.

9.3.3.6 Keyword-Driven Automation Tools
Keyword-driven test is a way to execute test scripts at a higher level of ab-
straction. The idea is similar to that of a service or subroutine in programming
where the same code may be executed with different values.

Keywords are defined to represent a script, and a tool can then act as
a link between the keywords and the tool executing the corresponding test
script. Values may be assigned for parameters associated with the keywords.

3779.3 Testing Tool Categories

Book_samlet.indb 377 2/19/08 8:17:17 PM

The tools make it possible to use parameter-driven test scripts without
having to change the (often complicated) scripts in the execution tool.

Keywords are usually related to higher level functionality or business
procedures. They may also reflect use cases.

The tools for keyword-driven testing are also known as script wrappers,
because they wrap the technical part of the test (the actual test scripts and the
test execution tool) so that the testers only need to know about the high-level
keywords

Keywords may be held in spreadsheets or tables, and longer sequences
executions of test scripts can be specified by sequences of keywords.

A test sequence defined by keywords in a table may look like this:

Each keyword has a number of parameters with specific meanings. See if
you can figure out what the meanings are.

Keyword-driven test is getting more and more sophisticated, introducing
several levels of abstraction between the tester and the technical test scripts.

Test wrapping tools are available commercially and as open-source,
but they are also very often homemade and usually quite simple, yet very
effective.

Keyword-driven testing requires a good overview of the test assignment
and a high level of abstraction as all parameterization does. This is demanding
but can be rewarding for the test in the long run.

The advantages of these tools are primarily seen from the point of view
of those controlling the test execution, especially if these are domain
experts rather than test analysts. For test executioners it is easier to use
keyword-driven testing rather than test script directly, because:

 Keywords that reflect the business can be chosen
 Test execution can be done automatically by nontechnical
 people based on the keyword lists
 The keyword list is robust to minor changes in the software

Keyword P1 P2 P3

Create customer Mr. Paul Smith

Create customer Ms. Anna Philipson

Find customer Ms. Anna Philipson

Edit customer , ,Philipsson

Find customer Mr. Pail Smith

Find customer Mr. Paul Smith

Delete customer Yes

Testing Tools and Automation378

Book_samlet.indb 378 2/19/08 8:17:17 PM

 The implementation of the keywords is independent of the
 implementation of the underlying scripts, so that the same keyword
 lists may be used with scripts in a number of different scripting
 languages being executed in different execution tools

Using keyword-driven testing does not ease the work with the actual test
scripts. They still need to be established (captured or written) and maintained,
and they need to be able to be executed with different parameter values.

The pitfall here is that extra layers are put in between the test executer
and the product under testing. It requires more coordination and communi-
cation between the people involved to maintain the integrity of the layers in
the testware.

Last but not least—and again a possible advantage rather than a pitfall
—is the fact that keyword-driven testing requires extra care in configuration
management. This kind of testing has several layers of testware instead of
“just” test scripts to keep track of and to keep consistent.

9.3.3.7 Comparison Tools
Comparison tools are used to find differences between the expected and the
actual results.

These tools range from very simple comparison facilities, like in Word, for
example, to very advanced, dedicated tools. Test execution tools normally
have some comparison facility included.

The tools may be able to compare, for example, values in files or on screens,
bitmaps, and positions.

The advantage is that these tools can compare large amounts of data very
fast and without getting tired.

The pitfall is that they may produce enormous amounts of reported data of
which only a fraction is relevant. The tools can, and should, have filtering or
masking possibilities (for example, to allow them to ignore dates or to ignore
positions of objects and concentrate on the contents).

A comparison tool I use quite often is the window in my office. When I need
to compare two texts or two drawings on paper, I place the papers on top of
each other and hold them against the window. Differences are usually easy
to spot.

9.3.3.8 Fault-Seeding and Fault-Injection Tools
These types of tools are used to support the defect-based test technique fault-
injection (or fault seeding) discussed in Section 4.3.2.

The tools create or inject faults (or defects) into the software component
under testing. The tools can work either on the source code, changing the code in
prespecified ways, or on the compiled code, changing the structure of the code.

3799.3 Testing Tool Categories

Book_samlet.indb 379 2/19/08 8:17:18 PM

In both cases new versions of the component under test are created with
the specified defects.

The advantage of the fault-seeding and fault-injection tools is that many
defects may be injected in a systematic way to support these defect based
techniques.

The disadvantage of the tools is that the defects are not necessarily realistic
and may not be found by the specified tests.

9.3.3.9 Web Tools
These days testing never stops. With more and more Web-based products
around, we need to constantly monitor that the products are doing well.
Products being Web-based means that some issues are out of our hands (for
example, hyperlinks and server and network availability).

Hyperlink testing tools are used to check that no broken hyperlinks are
present on a Web site.

These tools often have additional functionality such as HTML validation,
spelling, and availability check. The facility is often built into other tools (e.g.,
HTML development tools).

Monitoring tools are used for Web-based products, most typically e-com-
merce and e-business applications. The tools monitor the product’s availabil-
ity to customers and the service level (performance and resource usage). The
tools will issue warnings if the monitoring shows that something is not as
expected.

Many free Web tools are available for this type of tool. Many are also
proprietary, and they can be quite sophisticated.

The advantage of these tools is that they can check all hyperlinks very
quickly. It is important for the trustworthiness of a Web site that there are no
broken links. Links change very quickly, and it can be quite an eye-opener to
run such a check for the first time on your “perfect” Web site. The tools also
give us a chance to know if things are not working as they should before the
users find out.

There is no disadvantage using these tools. It should be an ongoing activity,
at least once a day, to perform these checks.

9.3.4 Tools for Technical Test Analysts
9.3.4.1 Static Analysis Tools
Static analysis can be performed on code as well as on architecture.
Static analysis is discussed in detail in Section 4.5. Most static testing is per-
formed by people, but some types are supported by tools.

Static analysis tools examine the written code to detect, for example,
variable anomalies, to check adherence to defined coding rules, and to collect
measurements concerning the code, for example, cyclomatic complexity and
Web site balance.

Testing Tools and Automation380

Book_samlet.indb 380 2/19/08 8:17:18 PM

The code is not executed in static analysis, and no test cases are executed
either.

One advantage of automated static analysis is that the tools find all
occurrences of the faults they are looking for. Tools do not get tired or “blind”
to faults they have seen many times before.

Static analysis requires some coding standards to check against to find
deviations, and that can also be considered an advantage. The more
structured and uniformly the code is written, the easier it is to maintain.

The disadvantage of static analysis is that some tools—especially some
older tools—may find a number of “incidents” that are not faults after all. The
reports for static analysis can be overwhelming with many things that can be
disregarded, and that can make it difficult to find the “gold nuggets.”

9.3.4.2 Dynamic Analysis Tools
Dynamic analysis tools are used to provide information about the behavior
and state of software while it is being executed. These tools primarily give
run-time information about memory handling and pointers.

Memory handling is concerned with allocation, usage, and deallocation of
memory. The tools can detect memory leaks, where memory is gradually being
filled up during extended use, long before it actually happens. Some coding
languages prevent such defects from happening; others don’t, for example C
and C++.

Pointers are used to handle dynamic allocation of memory and the dy-
namic analysis tools can identify unassigned pointers, that is, pointers point-
ing at “who-knows-what.” They can also detect faults in pointer arithmetic.

The advantage of these tools is that they can find faults that are almost
impossible or very expensive to find in other ways. They don’t need specific
test cases, because they report on what is going on while other test cases or
scenarios are executed.

A disadvantage is that the code is instrumented by the tool in order for the
tool to catch the run-time information. This means that it is not strictly the
“real” code we are testing. It can also have an adverse impact on performance,
and that can pose problems if we are testing real-time software.

One thing to be aware of is that different dynamic test tools may report
different types of problems because of the way they are implemented.

A special type of dynamic analysis tool is coverage measurement tools or
analysis tools. These tools provide objective measurement for some structural
or white-box test coverage metrics, for example,

 Statement coverage
 Branch coverage

3819.3 Testing Tool Categories

Book_samlet.indb 381 2/19/08 8:17:18 PM

The advantage of these tools is that objective measurements to be used in the
checking against test completion criteria are delivered in a fast and reliable way.

Some tools can also deliver reports about uncovered areas. The more fancy
ones produce colored reports where covered code is shown in one color and
uncovered code in another. This is a great help when more test cases must be
designed to obtain a higher coverage.

The disadvantage is that the code is instrumented and that the tools log
information during execution. This may affect the performance, and it can be
a problem for real-time systems.

9.3.4.3 Performance Testing Tools
Performance testing tools are used to:

 Generate large volumes or loads on the product
 Measure the performance of the product under the
 controlled circumstances

The tools can be used to create the volumes specified in the volume
requirements and necessary for volume testing. This may be the number of
concurrent users, the amount of memory to be used, the number of infor-
mation items of a given type (e.g., customers or patients), or the number of
transactions per time unit.

The usage of the tools for stress testing is similar to the one described for
volume testing.

For performance testing the tools can be used to measure what the
performance is under given circumstances.

The performance testing tools can provide very useful reports based on
collected information, often in graphical form.

The advantage of these tools is that they can provide information about
“bottleneck” areas relatively inexpensively before the product hits the real
world.

There are no disadvantages of these tools, and hence no excuse for not
using them. All too many products have no or insufficient performance
requirements and turn out to be unable to cope with real-life volumes and
loads. It is much better to get these aspects tested before the product breaks
down when the first set of users starts using it.

9.3.5 Tools for Programmers
9.3.5.1 Debugging Tools
Debugging tools are NOT testing tools!

They are related to testing, since they are used by programmers to pin-
point defects. For this purpose they are a very efficient aid.

Testing Tools and Automation382

Book_samlet.indb 382 2/19/08 8:17:18 PM

Debuggers allow programmers to:
 Execute the code line by line
 Insert break points
 Control and set values of variables at break points

Note that when testers use debugging tools to locate defects in testing
tools, test scripts, or other types of testware, they do not do that in their
capacity of testers, but as developers of testware. This may seem like quibbling,
but for common understanding and communication purposes it is important
to be able to distinguish between different roles, even when they are filled by
the same person.

The advantage of these tools is that they can save the programmers a lot of
time during detailed fault hunting. It can also be motivating for some testers
with a development background to work with the programmers and use these
tools to pinpoint not only the failure, but also the fault.

On the other hand the pitfall is that programmers can waste a lot
of time if the tools are used in an undisciplined way or to play with.

Questions
1. What are the activities in the tool acquisition process?
2. What is a “fool with a tool,” and what does that mean?
3. Who should be on a tool selection team?
4. What is a testing tool strategy used for?
5. What should be considered in a tool acquisition business case?
6. What is the most important type of requirement for a tool?
7. What are the ways in which a tool can come into existence in an
 organization?
8. What should be investigated about the supplier?
9. What could an evaluation scale be like?
10. What is important in a trial?
11. What are the activities in tool implementation?
12. What are the roles in tool introduction?
13. What are the goals of a pilot project?
14. What is the most important part of the actual rollout?
15. What must be done with tools used in testing?
16. How can testing tools be categorized?
17. What is the categorization of testing tools used in this book?
18. Which tool category does not contain testing tools?
19. What do we need to be careful about for test management tools?
20. What activities do configuration management tools support?
21. What is the pitfall of these tools?
22. What does a test design tool do?

383Questions

Book_samlet.indb 383 2/19/08 8:17:19 PM

23. What are data preparation tools used for?
24. What is an oracle in testing context?
25. When should simulation tools be used?
26. What are test harness and drivers used for?
27. What are test execution tools also called?
28. What do test execution tools use for execution?
29. What are the advantages and pitfalls of test execution tools?
30. What is keyword-driven testing?
31. What are tools for keyword-driven test also called, and why?
32. What gets even more important when keyword-driven testing is used?
33. Where are comparison tools often found?
34. What is the disadvantage of fault injection tools?
35. What can Web tools do?
36. What are the advantages of static analysis tools?
37. What do dynamic analysis tools provide information about?
38. What can some advanced coverage measurement tools provide?
39. What can performance testing tools do?
40. What is a debugging tool?

Testing Tools and Automation384

Book_samlet.indb 384 2/19/08 8:17:19 PM

Appendix 9A List of Testing Tools
This list was found on the Web site:
www.aptest.com/resources.html on August 19, 2007.

Source Testing Tools
AdaTEST
AQtime
BoundsChecker
Bullseye Coverage
CMT++
Code Coverage
CodeCheck
CodeWizard
CTA++, CTB
CTC++
devAdvantage
Diversity Analyzer
GlowCode
Insure++
LDRA Testbed
Leak Check
Logiscope
OSPC
Panorama
McCabe TQ
PolySpace Suite
Predictive Lite
Prevent
Purify
TBGEN
TCAT C/C++
TCMON
Test Coverage

Functional Testing
Tools
.TEST
AberroTest
AETG Web

Automate!Test
Manager
Automated Test
Designer
AutoTester One
Avignon Acceptance
Testing System
BugHuntress
CAPBAK/X, CAPBAK/
MSW
Certify
CitraTest
Code Testing Tool Pro
Eggplant
Eventcorder
FERRET
GUITAR
Haven
Holodeck
JPdfUnit
MITS.GUI
PETA
PyUnit
QACenter
Replay Xcessory
Repro
SAP Software Quality
Assurance Testing Tools
ScriptMap for Siebel
ScriptTech
Silktest
Smalltalk Test Mentor
Squish
TALC2000
TestArchitect

TestComplete
TestWorks
Unified Test Pro
Vermont HighTest Plus
VNCRobot
WinRunner
X-Unity

Performance Testing
Tools
BugTimer
DB Stress
LoadeaTest
LoadRunner
Monitor Master
IxLoad
QACenter Performance
Edition
Scapa StressTest for
Citrix MetaFrame
Shunra\Storm
SilkPerformer
SSW Performance PRO!
97
TestLoad
Vantage
WinFeedback
XtremeLoad

Java Testing Tools
Abbot
AdaptiveCells/J
AgileTest
Agitator
AppPerfect DevSuite

385Appendix 9A List of Testing Tools

Book_samlet.indb 385 2/19/08 8:17:19 PM

Bugkilla
Cactus
GJ-Coverage
GJTester
GUIdancer
JCover
JCover
Jemmy
JMeter
JStyle
JSystem
jtest
JUnit
JVerify
KCC
LISA
Panorama
Marathon
QEngine
qftestJUI
QStudio Enterprise
TCAT/Java
Embedded Test Tools
Message Magic
Reactis Tester
TBrun
Tessy
TestQuest Pro
USBTester
VectorCAST

Database Testing
Tools
AETG
Data Generator
Data Generator
Datatect
DTM DB Stress
ER/Datagen
Jenny
Jumpstart
SQL DB Validator
SQL Profiler

SQS/Test Professional
TestIt!
TurboData
utPLSQL

Link and HTML
Testing Tools
AccVerify/AccRepair
ChangeAgent
CSE HTML Validator
Cyber Spyder Link Test
Dead Links
HTML Candy
HTML PowerTools
HTML Tidy
InFocus
Link Checker Pro
LinkRunner
LinkScan
LinkSleuth
Link Validator
MOMspider
Ramp Ascend
Real Validator
Truwex website QA
tool
WebLight
WebQA

Online Link and
HTML Testing
Services
Audit Blossom
Bobby
CSSCheck
CSS Validation Service
Dr. Watson
HTML Validator
HTML Validation Ser-
vice
Link Alarm
NetMechanic
Site Check

SiteTechnician
Validation Spider
W3C Link Checker
Weblint Gateway
Web Page Backward
Compatibility Viewer
Web Page Purifier
XML Validation
Web Functional Test
Tools
actiWATE
Astra QuickTestTM
AutoTester One
Badboy
Canoo WebTest
eValid
IeUnit
Imprimatur
Internet Macros
HTTP::Recorder
iRise Application
 Simulator
ITP
LISA
MaxQ
Netvantage Functional
Tester
PesterCat
QA Wizard
Ranorex
Rational Robot
Sahi
SAMIE
Selenium
SilkTest
SoapTest
soapui
Solex
Squish
swete
TestSmith
TestWeb
vTest

Testing Tools and Automation386

Book_samlet.indb 386 2/19/08 8:17:20 PM

WatiN
Watir
WebAii
Webcorder
WebInject
WebKing
WET
WSUnit
Yawet

Web Security
Testing Tools
QA Inspect

Web Performance
Testing Tools
ANTS
Dotcom-Monitor
forecast
http_load
Jblitz
LoadTracer
Microsoft Application
Center Test
NeoLoad
OpenLoad
OpenSTA
Portent
PowerProxy
Proxy Sniffer
PureLoad
QuotiumPro
Siege
SilkPerformer
StressIT
Site Tester 1.0
TestMaker
WAPT
Wbox
Web Application Stress
Tool
Webload
WebPartner TPC

Web Performance
Trainer
Web Polygraph
Web Roller
Web Server Stress Tool
WebSizr
Web Performance Test
Services
Load Gold
SiteStress
webStress

Web-Based Bug
Tracking
AceProject
AdminiTrack
ADT Web
Bug/Defect Tracking
Expert
BugAware.com
bugcentral.com
BUGtrack
BugHost
BugRoster
BugStation
Bug Tracker
Bug Tracker Software
Bug Tracking
Bugvisor
Bugzero
Bugzilla
Census BugTrack
DefectTracker
Defectr
DevTrack
Dragonfly
ExDesk
FogBUGZ
Fast BugTrack
Footprints
GranPM
IssueTrak
JIRA

Jitterbug
JTrac
Mantis
MyBugReport
Ozibug
Perfect Tracker
ProblemTracker
PR Tracker
QEngine
SpeeDEV
Squish
Task Complete
teamatic
TeamTrak
TrackStudio
VisionProject
Woodpecker IT
yKAP

Bug Tracking
Applications
assyst
BridgeTrak
BugRat
BugSentry
Bug Trail
Defect Agent
Defect Manager
Fast BugTrack
GNATS
Intercept
IssueView
JIRA
ProjecTrak
PVCS Tracker
QAW
Support Tracker
SWBTracker
TestTrack Pro
Track
ZeroDefect
Test Management Tools
ApTest Manager

387Appendix 9A List of Testing Tools

Book_samlet.indb 387 2/19/08 8:17:20 PM

Extended Test Plan
QADirector
SilkPlan Pro
T-Plan Professional
TestDirectorTM
Test Manager Adaptors
TestLog

API Testing Tools
ADL project repository
MITS.Comm
DejaGNU
TET

Communications
Testing Tools
AdventNet Simulator
ANVL
Chariot
Cheetah
Drive Test
Emulation Engine XT

FanfareSVT
Fault Factory
InterWatch
iSoftTechTAS
LANTraffic
Maxwell
NetDisturb
NetworkTester
nGenius Performance
Monitor
NuStreams 2000
Silvercreek SNMP Test
Suite
SNAsim
VoIP Conformance Test
Suite
WAN Emulator

Requirements
Management Tools
Analyst Pro
Doors

Caliber
Gatherspace
RequisitePro
SpeeDEV RM
SteelTrace

Other Products
Aprobe
Ascert
Bug Shot
Exchange Simulator
Funnel IT
InSpec
KaNest
LogStomper
QACenter 3270 Edition
SOAPSonar
Stabilizer
TestBench400
TestOOB

Testing Tools and Automation388

Book_samlet.indb 388 2/19/08 8:17:20 PM

People Skills

People work for one single reason: We have to. There are,
however, many explanations for why we have to—also some

more specific to testers.
The individual’s testing capability can be derived from experi-

ence and/or training in one or more of the following areas: users,
development, and testing. No matter who we are, interpersonal
skills such as giving and receiving criticism, influencing, and
negotiation are all important in the role of testing.

People are different, and it is an advantage to have a variety
of personality types within the test team. The best combinations
may be ensured at times of recruiting. Even if that is not possible,
knowledge of certain patterns of behavior can help us enhance
the team we are working with.

Testers work in many different organizations, and they all
have different organizational structures for testing and for other
activities. Communication within an organization is essential,
not least in testing.

10.1 Individual Skills
Testing is a profession. It requires certain skills and capabilities of
the individual testing practitioners. It also requires people with
certain human characteristics or personality types.

People have individual personalities. A person’s personality is
very difficult to change; we are born with many of the traits, and
the rest have been chiseled into us from then on!

There are some common traits that will help testers in their
position as professional testers. A tester should preferably, and
very generally speaking, be:

 Intelligent—Testing is an intellectual type of work
 Creative—Testing needs to be inventive to be effective
 Persevering/enduring—Testing needs to go on and on
 despite resistance and pressure

10
CHAPTER

Contents

10.1 Individual Skills

10.2 Test Team
 Dynamics

10.3 Fitting Testing in
 an Organization

10.4 Motivation

10.5 Team
 Communication

389

Book_samlet.indb 389 2/19/08 8:17:21 PM

 Systematic—Testing needs to have a trustworthy coverage
 Pragmatic—Testing is sampling in its nature
 A good communicator—Testing has many stakeholders
 Courageous—Testing can be perceived to bring bad news
 Mature—Testing is a demanding profession

Personality types and how they can be deployed to the advantage of test
teams are discussed in more detail in the next section.

Professional testers need to have training and experience in testing. Training
includes:

 Education, either from an educational, institution or in the form of
 courses in testing theory. The testers should learn to remember and

 understand test-related terms, concepts, and statements.
 On-the-job training and mentoring. The testers should learn to
 apply their knowledge.
 Carrying out of test tasks. The testers should learn to see structures

 and principles and divide the task into smaller tasks.
 Experience exchange and further education. The testers should

 learn to combine and think in abstract terms.

Even though testing is a specific profession many testers have had other
careers before they became testers. I have encountered a former dentist, a
lawyer, several chemists, and many, many others. However, most testers, who
have not started out as testers, either have a background in development or in
the domain of the product they are working with.

Some say that a tester must have a development background. It is not
necessarily so, but it certainly helps. Knowledge of how software development
is done gives an invaluable insight into what could cause errors to be made
and how faults can possibly be introduced.

Having a background in the product domain can also be a great help
in a testing career. It facilitates the understanding of the requirements and
the necessary test environment. Knowledge of the domain creates valuable
credibility from the point of view of the users of the product. In fact it can
be a good investment to provide testers without relevant domain knowledge
with a feeling for where the product they are working on is going when it is
released.

Many testers in the economic sector have a background in banking.

IT
skills

People Skills390

Book_samlet.indb 390 2/19/08 8:17:21 PM

10.1.1 Test Roles and Specific Skills
Testing is not just one single activity. If we take a close look at the test process
and all the tasks testers have to perform, we can see that there are a number
of different test roles involved.

The test roles may be defined as:

 Test leader (manager or responsible)
 Test analyst/designer
 Test executer
 Reviewer/inspector
 Domain expert (user representative)
 Test environment responsible
 (Test)tool responsible

Each of these roles requires specific skills and capabilities of the people
filling them, apart from the general traits and skills required for all testers.
The following table lists the most important ones:

Should have training and/or experience in

Test leader Test policy and strategy for the organization
Testing standards
Test management: estimation, planning,
monitoring, control, reporting,
managing people

Test analyst/designer Analysis of requirements and other
specifications
Design of test cases
Effective usage of test
case design techniques
Building and documenting test procedures

Test executor Executing, recording,
and checking tests

Reviewer/
inspector

Static test techniques

Domain expert Basic test principles

Test environment
responsible

Platform(s)
Test database administration

Test tool
responsible

Platform(s)
Specific tool(s)

10.1 Individual Skills 391

Book_samlet.indb 391 2/19/08 8:17:22 PM

10.1.2 Testing by Other Professionals
Even though testing is a profession in its own right, people in other professions
can also participate and contribute in the performance of the testing activities.

Users may be good testers. This applies to both future users of the new
product and actual users of similar products or earlier versions of the product.
The users obviously see the product from the users’ perspectives. In other
words users have ideas about the future use of the product. This provides
insight into where failures would have the greatest impact (i.e., it provides
input to the risk management).

Users are best involved in requirements analysis—this is where it all
starts. But they can also be very useful in the test, even if in-depth knowledge
of the domain does not reside with (naïve) users.

Developers may be good testers. They know how difficult requirements
analysis is, how difficult design is, and how difficult coding is, and this means
that they have insight into where errors may have been made, and hence
where the faults may be.

Developers are best involved in static testing. They can also contribute in
dynamic testing, not least in component testing and component integration
testing.

10.1.3 Interpersonal Skills
Interpersonal skills are important in the roles of testing. Testers need to know
how to:

 Give and receive criticism
 Influence people
 Negotiate

Giving criticism is very difficult for most people. We don’t want to hurt each
other—most people prefer to have peace rather than pointing out failures.

Again we need to consider what testing is. It may be seen as a destructive
activity, since the tester has to find and register failures. However, registration
of failures is not criticizing the developer. Testing is a very constructive develop-
ment activity—it contributes to the possibility of everybody reaching the com-
mon goal of delivering a product of a good quality, learn, and becoming even
better in the future.

Testers do however have to give criticism from time to time. The basic
rules for doing that are:

People Skills392

Book_samlet.indb 392 2/19/08 8:17:22 PM

 Stay calm

T: “Is it convenient for you if we talk about my findings now?”

 Keep to the facts

T: “During the last hour I think I have come across 27 failures in the
customer invoicing feature.”

 Don’t blame

T: “We need to figure out how this situation can be stabilized—is there
anything I can do?”

 Keep an open mind—you could be wrong!

Receiving criticism is just as difficult as giving it. We feel threatened, and
some of our needs (respect, recognition, and security) seem to be jeopardized.

Testers do however have to take criticism from time to time if we want to
get better at our job. The basic rules for doing that are:

 Listen carefully for the tiniest bit of truth

D: “You keep disturbing me with all those * failures!”
T: “Yah, I’m sorry I come barging in here every 10 minutes.”

 Ask for clarification of view and goals

T: “How do you suggest I go about reporting the failures?”

 Make concessions—when the criticism is legitimate, you have to
 admit to it frankly—otherwise you’ll loose credibility!

Testing interacts with many other development and supporting activities.
We are dependent on other people’s decisions and other people’s schedules.

Often testers harbor a feeling of being victims. We find ourselves in impos-
sible situations, and we don’t do much about it because: “This is just the
way things are!” There is no reason for bending under this “law of necessity.”
Infact testers can usually influence more than they think—especially if we
start early.

Some of the areas, where testers are dependent on others, but where we
may also use our influence, are:

10.1 Individual Skills 393

Book_samlet.indb 393 2/19/08 8:17:23 PM

 Delivery order—By asking and explaining why
 Delivery quality—By defining entry criteria
 Delivery date—By negotiating with other managers
 Planning of test activities—By talking to other managers
 Allocation of resources—By negotiation with management
 Classification of failures—By using a scheme
 Training—By asking and participating
 Process improvement—By contributing and participating

When we assert our influence on other people it is useful to remember
that demands create resentment, while requests for help usually create
kindheartedness.

T: “It would be a great help for us if we could start testing the components xx
and yy first. Would you be able to help us do that?”

Like in all other communication we need to listen first and then talk.
When we listen we must listen for reasons, goals, fears, and threats from the
other party’s point of view. And when we talk, we most of all have to explain.
We have to explain our reasons, goals, fears, and threats.

Most of the time we can come to an agreement simply by talking and ex-
plaining our needs and constraints to each other.

However, sometimes we get into a situation where we have to negotiate,
that is, to engage in bargaining to reach agreement.

A few basic rules about negotiations are:

 Look behind the positions to the real interests
 Work with BATNAs—Best alternative to a negotiated agreement
 Walk away if negotiation is going nowhere
 Identify options as parts of the solution
 Go for a win-win solution
 Aim at an atmosphere of common problem solution

10.2 Test Team Dynamics
Imagine if everybody were like you…

Would life be better or worse for that?
People have different personalities. This has been known since the ancient

Greek philosophers defined four temperaments:

 Phlegmatic
 Sanguine
 Choleric
 Melancholic

People Skills394

Book_samlet.indb 394 2/19/08 8:17:23 PM

The philosophers also said: “We all have our share of each—in different
mixtures.”

Others have studied personalities including Freud, Jung, and Myers-
Briggs. Based on Jung’s work, Myers-Briggs defines 16 personality types com-
posed from four dimensions. The dimensions are:

 How do you get energy:
 Extraversion (E) / Introversion (I)
 How do you collect information and knowledge:
 Sensing (S) / Intuition (N)
 How do you decide:
 Thinking (T) / Feeling (F)
 How do you act:
 Judging (J) / Perceptive (P)

The Greek view is quite simple; the Myers-Briggs view rather complex; and
they are both concerned with the individual person as just that: an individual.

10.2.1 Team Roles
Dr. Meredith Belbin and his team of researchers based at Henley Management
College, England, have studied the behavior of managers from all over the
world during a period of over nine years. Their different core personality traits,
intellectual styles, and behaviors were assessed during the exercise.

Results from this research showed that there are a finite number of be-
haviors or team roles. A team role as defined by Dr. M. Belbin is: “A tendency to
behave, contribute and interrelate with others in a particular way.”

Belbin has defined nine team roles based on his studies. They each de-
scribe a pattern of behavior that characterizes a person’s behavior in relation-
ship to others in a team.

The nine team roles are divided into three role types to create an overview
and a deeper understanding of how the roles work.

The Belbin roles are:

 Action-oriented
 Shaper
 Implementer
 Completer

 People-oriented
 Coordinator
	 Team worker
	 Resource investigator

39510.2 Test Team Dynamics

Book_samlet.indb 395 2/19/08 8:17:23 PM

 Cerebral
 Plant
 Monitor
 Specialist

All of the roles have some valuable contributions to the progress of the team
in which they act. They also have some weaknesses that may have an adverse
effect on the team.

The contributions and weaknesses are summarized in the following table.

Team Role Contributions Weaknesses

Shaper Challenging, dynamic, thrives on
pressure. The drive and courage
to overcome obstacles.

Prone to provocation.
Offends people’s feelings.

Implementer Disciplined, reliable, conservative,
and efficient. Turns ideas into
practical actions.

Somewhat inflexible.
Slow to respond to new
possibilities.

Completer/
finisher

Painstaking, conscientious,
anxious. Searches out errors
and omissions. Delivers on time.

Inclined to worry unduly.
Reluctant to delegate.

Coordinator Mature, confident, a good chair-
person. Clarifies goals, promotes
decision-making, delegates well.

Can often be seen as
manipulative. Off-loads
personal work.

Team worker Cooperative, mild,
perceptive, and diplomatic.
Listens, builds, averts friction.

Indecisive in crunch
situations.

Resource
investigator

Extrovert, enthusiastic,
communicative. Explores
opportunities. Develops contacts.

Overly optimistic. Loses
interest once initial
enthusiasm has passed.

Plant Creative, imaginative,
unorthodox. Solves difficult
problems.

Ignores incidentals. Too
preoccupied to communicate
effectively.

Monitor/
evaluator

Sober, strategic, and discern-
ing. Sees all options. Judges
accurately.

Lacks drive and ability to
inspire others.

Specialist Single-minded, self-starting,
dedicated. Provides knowledge
and skills in rare supply.

Contributes only on a narrow
front. Dwells on technicalities.

Everybody is a mixture of more team roles, usually with one being dominant.
An analysis of one’s Belbin team role will give a team role profile showing the
weight of each role in one’s personality.

People Skills396

Book_samlet.indb 396 2/19/08 8:17:24 PM

10.2.2 Forming Testing Teams
It is the test manager’s responsibility to get the test team to work for a specific
testing task. And it is the higher management’s responsibility to choose a test
manager with the right traits, skills, and capabilities.

There are two aspects to a team: the people and the roles assigned to
the people. Each individual person in a team has his or her personal team
role profile (for example, according to Belbin) and a number of skills and
capabilities. Each role has certain requirements toward the person or the
people who are going to fill it. Apart from all that, the people in the team need
to be able to work together and not have too many personality conflicts.

It can be quite a puzzle to form a synthesis of all this. But the idea is to
choose people to match the requirements of the roles and to fit together as a
team.

The ideal situation is of course when the manager can analyze the roles
he or she has to find people for and then hire exactly the right people.
Advertisements and other recruitment efforts can be tailored to the needs.
The applicants can be tested, both for their personal traits and for their skills
and capabilities. The team can then be formed by the most suitable people—
and ahead we go.

Unfortunately life is rarely that easy, although it sometimes is. In most cases
either the test manager has an already defined group of people from which to
form a team, or he or she has a limited and specific group of people to choose
from. It can also be that the manager has to find one or more new people to fill
vacancies on an existing team.

In all cases the knowledge of people’s Belbin team role profiles is a great
advantage. Even people in teams that have worked together for a long time
can benefit from knowing their own and the other team members’ team role
profiles.

I once worked on a team with many frictions and mistrust. One of the team
members had heard of the Belbin roles and we all had a test. That was a true
revelation to us all. The two team members with the most friction between
them were very different types. They had both been completely at a loss as
to why the other acted as he did. Having understood that it was not ill will,
but simply a question of being very different personalities, they worked much
better together in the team.

The contributions as well as the weaknesses of each team role must be
considered. A well-formed team is a strong team, and a team tailored for the
task is the strongest team you can get.

Forming teams and getting them to work is not an easy task. There is no
absolute solution.

39710.2 Test Team Dynamics

Book_samlet.indb 397 2/19/08 8:17:26 PM

10.3 Fitting Testing in an Organization
10.3.1 Organizational Anchorage
Testing is always done in an organization, and it can be anchored in many
different ways in an organization. It can in fact be anchored in several places
during the course of a development project and the subsequent maintenance
period for the product running in production.

Let’s first take a look at the different organizational units involved in test-
ing. They can, for example, be:

 Product management
 Project management
 Quality assurance department
 Development department
 Development team
 Internal test department or test team
 External test organization
 Internal or internal consultants
 Sales/marketing department
 Support organization
 Internal IT-department
 The customer
 Present and future end users
 Subcontractor(s)
 Process or method department

Distributing the responsibility for all the testing activities for the appro-
priate testing levels and the defined testing roles over organizational units is
a three-dimensional jigsaw.

A number of rules should be observed for this puzzle:

 Testing requires one or more test teams—We can for example have a test
 team for component and integration testing, and another team for
 system testing.

 Test teams are composed of a number of roles—All the roles must be
 covered for the entire test task for a project, but it could be that the
 component testing does not require a test environment responsible or
 a domain expert.

 A role can be filled by one or more people—This depends on the size of
 the team. We may for example need one responsible for the test, a number of
 test designers, and an even greater number of test executors for a large
 test task.

 One person can fill one or more roles—Again this depends on the size.

People Skills398

Book_samlet.indb 398 2/19/08 8:17:27 PM

 The test designer can for example also be the test executor. Here it is
 important to remember that less than 25% assignment to a role = 0 (i.e.,
 don’t cut your slices too thinly).

 People may come from different organizations—The developers could be
 test designers and executors for the component testing; people from an
 independent test department could fill these roles for system testing; and
 customer representatives could fill them for acceptance testing.

The distribution of the roles must be done with great care and document-
ed explicitly and precisely in the test plan and/or other relevant plans.

10.3.2 Independence in Testing
Testing should be as objective as possible. The closer the tester is to the producer
of the test object, the more difficult it is to be objective.

Producers usually find it quite difficult to try to get their own products
to fail. They have already done their best, so how can there be faults left in the
product. Impossible! Furthermore, producers carry with them to the testing
any assumptions on which the production was based. We therefore don’t get
a new viewpoint in the object.

Identical considerations apply for the project team testing each other’s
products, even though to a smaller degree.

The concept of independence in testing has therefore been introduced.
The degree or level of independence increases with the “distance” between the
producer and the tester. Six levels have been defined:

1. Producer tests his or her own product

2. Tests are designed by a different person than the producer, but one
 with the same responsibilities, typically another developer

3. Tests are designed by a tester who is a member of the same organiza-
 tional unit as the producer reporting to the same boss

4. Tests are designed by testers independent of the producing organiza-
 tional unit, though still in-house

5. Tests are designed by testers belonging to an external organization
 working in the production organization (consultants)

6. Tests are designed by testers in an external organization (third-party
 testing)

As can be seen in the list, the point is who designs the test cases. In
structured testing the execution must follow the specification strictly, so
the degree of independence is not affected by who is executing the test. In
less scripted tests, like exploratory testing, the independence is between the

39910.3 Fitting Testing in an Organization

Book_samlet.indb 399 2/19/08 8:17:27 PM

producer and the test executor.
The strategy must determine the necessary degree of independence for

the test at hand. The higher the risk, the higher should the degree of
independence be.

The independence usually varies for the different levels of testing. In com-
ponent testing we often see the lowest level of independence (= no indepen-
dence) even though the same concept in reviews does not seem acceptable. The
higher the test level the higher the independence usually is.

The three highest levels of independence include crossings of organiza-
tional borders. We have specific names for these types of tests, namely:

 Distributed testing—The test is carried out by people belonging to the
 same organization, but distributed geographically (or organizationally)

 In-sourced testing—The test is carried out in the development organization,
 but by people reporting to a different organization (consultants)

 Out-sourced testing—The test is carried out in a different organization by
 this organization’s own people

These ways of distributing responsibilities have advantages and disadvan-
tages, and they pose specific requirements on the organizations.

The obvious advantage is the inherent independence of testing. Other
advantages may be lower wages and overcoming shortage of staff.

The disadvantages will have to be taken into account in the risk analysis
for the testing project, and mitigations must be planned. People not having
taken close part in the development will be less prepared for the testing task
and might take longer to produce test specifications.

The risks related to distributed, in-sourced, and outsourced testing fall
within the areas of:

 Process descriptions
 Distribution of work
 Quality of work
 Culture
 Trust

The involved organizations must be aware of their own processes and the
processes to which the other parties work. If processes cannot be shared the
interfaces between them must be made very clear.

The work breakdown structure for the task assignment must be performed
to a rather large level of detail, and all involved must agree. The most important
part is for them to agree on the distribution of the tasks, so that nothing is left
out and nothing performed twice.

People Skills400

Book_samlet.indb 400 2/19/08 8:17:27 PM

Testing work to be done by people not having been closely involved in
the development of a product requires precise and comprehensive basis
documentation. A test team sitting far away from the development team
cannot easily ask what to expect when documentation is missing or how
to interpret unclear documentation. This is perhaps a blessing in disguise:
All other things equal, the better basis documentation, the better the product
will be.

For outsourced testing the quality assurance of the work being done is
a specific risk. We test work by testing its results, but we cannot test the
testing as such. We need to be prepared to do a thorough review of work
products produced by the outsourced organization and require comprehensive
documentation of fulfilled completion criteria.

Without trust between the people working together and relying on each
other the work will not be done properly. This goes for all kinds of work, but
especially when work is split up between different organizations. Mutual trust
must be the starting point, but all parties should remember that trust is very
easily lost and hard to earn back.

10.4 Motivation
Why do we work? And why do we test?

On the surface, testing does not bring about any value—the object under
testing is in principle unchanged by the test.

So is it really worth it—for the company and for us?
We have previously seen how testing brings value to the company by the

way the information we collect during the testing is used. This is why our
company pays us. But do we work just for money?

Traditionally a company or organization has been regarded as a control
system. The employees were a variable cost factor to be minimized through
rationalization. The salary was the main purpose for the employees and a
tool for the management. Today we see and know that at least in the western
world the salary is far from the only motivation.

A number of American scientists, Maslow, McGregor, Herzberg, and
Hackman, as well as Danish professor K.B. Madsen, have contributed to the
understanding of why we work.

test

product product
(unchanged)

Value ?

40110.4 Motivation

Book_samlet.indb 401 2/19/08 8:17:28 PM

10.4.1 Maslow’s Pyramid of Needs
Abraham Maslow, 1908–1970, had a Ph.D. in psychology from the University
of Wisconsin. One of the many interesting things he noticed while working
with monkeys early in his career was that some needs take precedence over
others. For example, if you are hungry and thirsty, you will tend to try to take
care of the thirst first. After all, you can do without food for weeks, but you
can only do without water for a couple of days! Thirst is a “stronger” need
than hunger. Likewise, if you are very, very thirsty, but someone has put a
choke hold on you and you can’t breathe, which is more important? The need
to breathe, of course.

Based on these observations, Maslow created his now-famous hierarchy of
needs.

Maslow laid out five broader layers: the physiological needs, the needs for
safety and security, the needs for love and belonging, the needs for esteem,
and the need to actualize the self, in that order.

1. The physiological needs. These include the needs we have for oxygen,
 water, minerals, and vitamins, as well as to be active, to rest, to sleep,
 to get rid of wastes, and to avoid pain.

2. The safety and security needs. When the physiological needs are largely
 taken care of, this second layer of needs comes into play. You will
 become increasingly interested in finding safe circumstances, stability,
 and protection.

3. The love and belonging needs. When physiological needs and safety
 needs are, by and large, taken care of, a third layer starts to show up. You

Deficit needs

Being needs

Physiological needs

Self-actualization

Esteem needs

Belonging needs

Safety needs

People Skills402

Book_samlet.indb 402 2/19/08 8:17:28 PM

 begin to feel the need for friends, a sweetheart, children, affectionate
 relationships in general, and even a sense of community.

4. The esteem needs. Next, we begin to look for self-esteem. Maslow
 noted two versions of esteem needs, a lower one and a higher one.
 The lower one is the need for the respect of others, the need for
 status, fame, glory, recognition, even dominance. The higher form
 involves the need for self-respect, including such feelings as confi-
 dence, competence, achievement, mastery, independence, and
 freedom. Note that this is the “higher” form because, unlike the
 respect of others, once you have self-respect, it’s a lot harder to lose!

All of these four levels Maslow calls deficit needs, or D-needs. If you don’t
have enough of something (i.e., if you have a deficit), you feel the need. But
if you get all you need, you feel nothing at all! In other words, they cease to
be motivating.

In the western world the basic needs are covered for almost everyone.
Most people therefore start a couple of layers up when they are to move up-
wards in Maslow’s pyramid. In the IT business where people usually have
higher education and higher salaries it is particularly the top two or tree layers
in the pyramid that can be unsatisfied. We need to keep this in mind when we
discuss motivation of testers.

10.4.2 Herzberg’s Factors
In the late 1950s Frederick Herzberg’s wrote the book The Motivation
to Work. This has become one of the most replicated studies in the field of
workplace psychology.

On the basis of interviews with engineers, politicians, scientists, accoun-
tants, officers, and others, Herzberg concludes that there are two factors in work-
ing situations: maintenance factors and motivation factors. The factors giving
satisfaction and motivation are separate and different from the factors that
create dissatisfaction. Satisfaction and dissatisfaction are not directly each
other’s contrast as illustrated here:

+

÷0

Satisfied

UnsatisfiedNeither satisfied
or unsatisfied

Motivation

Maintenance

40310.4 Motivation

Book_samlet.indb 403 2/19/08 8:17:29 PM

 The opposite of satisfaction with the work is not dissatisfaction, but
 rather no satisfaction.
 The opposite of dissatisfaction is not satisfaction, but rather no
 dissatisfaction.

Motivation factors are the factors that stimulate a need for personal
development, and they are embedded in the work, like performance,
recognition, responsibility, and promotion. Maintenance factors include com-
pany policies and administration, relations to colleagues, salary, status, and
security. Herzberg’s main point is that only the work itself can give lasting mo-
tivation.

If we compare Maslow’s pyramid with Herzberg’s factors, we see that
the motivation factors belong in the top two layers of the pyramid and the
maintenance factors in the three lower.

10.4.3 K. B. Madsen’s Motivation Theory
Both Maslow’s and Herzberg’s theories have been criticized: Maslow for
not having described a universal motivational process, but one reflecting
the American middle class; Herzberg for his interview form: If you ask
people about good and bad aspects of their working life, they are inclined to
attribute the bad ones to others, and the good ones to their own
accomplishments.

Danish professor K.B. Madsen has provided a synthesis of a number of
motivation theories. He sees us as being driven by internal forces (needs =
motives) and controlled by external forces (incentives).

Incentives can be split into primary and secondary. Primary incentives
activate our innate reactions. Secondary incentives activate our acquired
reactions. Some of the more important incentives are listed here:

Innate Acquired

Want to have Food and drink
Comfort
Service
Security

Money
Recognition
Honor and praise
Respect

Want to avoid Pain
Punishment
Aggression
Humiliation

Sarcasm
Danger signals
Frustration
Verbal threats

The motives are recognizable from Maslow. They can work together, or
they can be in conflict. We can be motivated by social motives like collecting
and presenting information, but that is usually not combinable with activity
motives like movement and suspension.

People Skills404

Book_samlet.indb 404 2/19/08 8:17:29 PM

In connection with our working life K.B. Madsen summarizes his and
other’s research in the following statements:

The most effective form of motivation is: interest in the task.
Almost as effective is: reward and praise.
Least effective form of motivation is: punishment and blame.

10.4.4 Testers’ Motivation
Motivation theories are, in general, not particularly aimed at testers. However,
we can map the general motives to the testing world.

Testers are motivated by an interest in the task. This means that testers
must think or feel that it is fun to find failures to be motivated to do their job.
They must see it as an intellectual challenge to reveal as many faults as possi-
ble in the given time. This is in many ways in contradiction with “acceptable,
nice behavior” and requires a very specific mind-set. Testers must sometimes
work hard to convince both ourselves and others around us that we work to-
gether to produce a more reliable product—not to destroy it.

Testers are motivated by reward and praise. We can also say that testers
must get recognition and respect—we certainly deserve it. This can be done
by management being very aware of the value testers add to the project and
hence to the company. Remember what we create of value? Project information!
The better we are at presenting the information and assisting the recipients in
using it, the more recognition and respect we get.

The earlier the testers are involved in the project the more we can prove
our value. Testers involved in early static testing can be a great eye-opener and
motivator for everybody.

Testers are demotivated by punishment and blame. One (rather sophisticat-
ed) form of punishment can be lack of career path. It can be very demotivating
if the organization ignores the testers and doesn’t provide us with a way to
climb up the organization ladder. On a more day-to-day scale lack of
understanding of value of testing (“Oh, you are just overhead”) or direct blame
(“Stop finding (read: producing) all those failures!”) can make the working
life of testers very uphill.

10.5 Team Communication
Testers need to communicate with people in all the organizational units
involved in the testing. This means that testers have to communicate with
many different people at many different organizational levels internally in
their organization and externally, for example, with customers.

The first thing to remember about communication is, that it is difficult. The
way of communicating where people understand each other absolutely
perfectly and completely is not possible.

40510.5 Team Communication

Book_samlet.indb 405 2/19/08 8:17:30 PM

We are people and we are all “colored” by our personalities, our upbring-
ing, and our experience—just to mention a few factors.

However, we have to communicate, and we have to make an effort to make
it work. One of the things we can do is to understand the type of people we are
dealing with, both in terms of their personality types, their education and
background, and their responsibilities and working conditions.

Another thing is to accept that it is the “sender” of the information who
is responsible for making it understandable to the audience. We as testers
must learn that other teams talk in different languages: Management speaks
“money”; users (and marketing and sales) speak “functionality and quality”;
developers speak “technique.” All our communication must be targeted to the
audience.

The most important and perhaps the most difficult communication lines
are those between the testers and:

 Project management
 Developers
 Users

Communication with project management is most often done by the
test manager. Project management needs to inform testers about aspects like
expectations, resources, constraints, quality criteria, and changes in plans and
discuss these factors. Testers on their part must inform project management
about issues like the progress of testing and quality of the product under testing.
This communication is usually based on written documentation like test
strategy, test plans, test progress reports, and test summary reports but
should also be accompanied by verbal communication.

The communication with development is usually done by test analysts and
designers. Development needs to inform testing about issues like especially

This is what I
say

This is what I
hear

This is what
I mean

This is what I
think is meant

Background Background

People Skills406

Book_samlet.indb 406 2/19/08 8:17:30 PM

complex or difficult areas of the product, which areas are new development,
and which have “just” been updated, other areas that need special atten-
tion for various reasons, changes in requirements and/or design, changes
in delivery schedule, specific difficulties during development, problems
reproducing reported failures, and when and why new test objects are delivered
for testing.

Testers need to inform development about failures found, problems aris-
ing during confirmation testing corrected defects, and problems concerning
the number and/or types of failures.

These issues can be delicate to talk about. The information should be
conveyed diplomatically as a means of improving the quality of the prod-
uct—not as blame! Also here written documentation may constitute some
of the communication, but verbal communication must not be eliminated
completely.

The users may communicate with many different test roles depending on
the organizational structure. Useful information can be provided by users to
testers, for example, concerning their expectations regarding the new prod-
uct, risk areas to the business in the product, assessment of the effect of iden-
tified risks, important areas in the product seen from the users’ perspective,
and background information about the business and the business processes.

This information can be used to support the risk analysis and the prioritization
of the testing. Users will often receive or see test results. Users with little
knowledge of testing may need help in the interpretation of these results.

Questions
1. What traits are useful for a tester to have?
2. What are the seven test roles that can be defined?
3. Which one do you prefer and why?
4. What should you remember when giving criticism?
5. What should you remember when receiving criticism?
6. What are the areas where testers are dependent on other people?
7. What are the negotiation rules?
8. What are the four temperaments?
9. What are the four dimensions that Myers-Briggs defined?
10. What are the nine Belbin team roles?
11. How should test teams be formed?
12. Which organizational unit may be involved in testing, and how?
13. What are the levels of test independence?
14. What are the differences between distributed testing, in-sourced
 testing, and outsourced testing?
15. What are the risk areas for these kinds of test organizations?
16. Why do you work in testing? (or in other areas as the case might be)

407Questions

Book_samlet.indb 407 2/19/08 8:17:30 PM

17. What is the idea in Maslow’s hierarchy of needs?
18. What is special for self-respect compared to the other needs?
19. What are Herzberg’s two types of factors?
20. What is the idea in K.B. Madsen’s motivation theory?
21. What is the most effective form of motivation?
22. Why is the “perfect” communication impossible?
23. Who do testers communicate with?
24. What do we communicate about?

People Skills408

Book_samlet.indb 408 2/19/08 8:17:30 PM

Selected Bibliography

Books

Beizer, B., Black Box Testing, Wiley, 1995.
Beizer, B., Software Testing Techniques, Wiley, 1990.
Black, R., Managing the Testing Process, Microsoft Press, 1999.
Buwalda, H., Janssen, D., and Pinkster, I., Integrated Test Design and Automation,
Addison-Wesley, 2001.
Copeland, L., A Practitioner’s Guide to Software Test Design, Artech House, 2003.
Fewster, M., and Graham, D., Software Test Automation, Addison Wesley, 1999.
Gerrard, P., and Thompson, E., Risk-Based E-Business Testing, Artech House, 2002.
Gilb, T., Software Inspection, Addison-Wesley, 1993.
Hass, A. M. J., Configuration Management Principles and Practice, Addison-Wesley,
2003.
Hass, A. M. J., Requirements Development and Management, DF-17; Copenhagen,
2003.
International Software Testing Qualifications Board, Certified Tester, Advanced Level
Syllabus, Version 2007.
Kaner, C., Bach, J., and Pettichord, B., Lessons Learned in Software Testing, Wiley,
2002.
Kit, E., Software Testing in the Real World, Addison-Wesley, 1995.
Koomen, T., and Pol, M., Test Process Improvement (TPI), Addison-Wesley, 1999.
Myers, G., The Art of Software Testing, Wiley Interscience, 2004.
Perry, W. E., and Rice, R. W., Surviving the Top Ten Challenges of Software Testing,
Dorset House, 1997.
Pinkster, I., et al., Successful Test Management, Springer, 2004.
Pol, M., Teunissen, R., and Veenendaal, E. van, Software Testing: A Guide to the
TMap Approac, Addison-Wesley, 2002.
Tobar, Ltd., Incredible Visual Illusions, Arcturus Publishing Limited, 2005.
Veenendaal, E. van., The Testing Practitioner, UTN, 2002.
Vinter, O., The prevention of Errors through error experience-driven test efforts, DELTA
rapport D-259.
Wiegers, K., Peer Reviews in Software, Addison-Wesley, 2002.

Standards

BS 7925-2 (1998) “Software Component Testing”
IEEE Std 829—1998/2005, “Standard for Software Test Documentation”
(currently under revision)

409

Book_samlet.indb 409 2/19/08 8:17:31 PM

IEEE Std 1028—1997, “Standard for Software Reviews”
IEEE Std. 1044—1993, “Standards Classification for Software Incidents”
IEEE Std. 1044.1—1995, “Guide to Classification for Software Incidents”
ISO/IEC 9126—1:2001, “Software Engineering—Software Product Quality”
ISTQB “Glossary of Terms Used in Software Testing,” Version 2.0, 2007

Web Sites

http//www.sei.cmu.edu/cmmi/products/models.html or
http//www.sei.cmu.edu/cmmi/general/genl.html (a very comprehensive descrip-
tion of CMMI®)
https//www.cis.strath.ac.uk/teaching/ug/classes/52.429/lecture10.pdf
www.belbin.com
www.iese.fhg.de/network/ISERN/pub/technical_reports/isern-98-32.pdf
(An Encompassing Life-Cycle Centric Survey of Software Inspection,
ISERN-98-32)
www.jamesmartin.com
www.sei.cmu.edu/cmm/obtain.cmm.html (CMM® Version 1.1)
www.sei.cmu.edu/sei-home.html
www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
www.ship.edu/~cgboeree/maslow.html
www.stsc.hill.af.mil/SWTesting/index.html (TMM in U.S. Air Force magazine
August and September 1996)

Selected Biblography410

Book_samlet.indb 410 2/19/08 8:17:31 PM

About the Author

With a M.Sc.C.E. degree, Anne Mette Jonassen Hass has worked in IT
since 1980. She has been involved in all aspects of software develop-

ment: requirements specification, analysis, design, coding, test, quality assur-
ance, and management. Mrs. Hass has worked in various types of businesses
such as hospitals, the oil industry, telecommunication, the public sector, and
the space industry in Denmark, Norway, England, France, and Italy.

Since 1995 she has worked as a senior consultant in DELTA AXIOM. Mrs.
Hass has worked in the fields of software testing, requirements management,
configuration management, and maturity assessments.

Mrs. Hass holds the ISEB Foundation certificate in software testing
and the ISEB Practitioner certificate in software testing. She has acted as a
consultant in the improvement of test procedures and the specification and
execution of software test in many companies. She also undertakes third-
party testing and validation of software, especially safety-critical software.

Mrs. Hass is the president of the iNTCCM, International Certified Configura-
tion Manager, and she has been heavily involved in the writing of the syllabus
for the configuration management certification, foundation level.

Mrs. Hass is in charge of the courses provided by herself and other
instructors in DELTA AXIOM. She produces training and marketing material,
runs courses, and oversees administrative activities. DELTA AXIOM’s courses
in ISTQB/ISEB software testing foundation and ISEB software testing practi-
tioner developed by Mrs. Hass are accredited in both English and Danish.
Currently Mrs. Hass is working on the courses for the ISTQB advanced
certifications. DELTA AXIOM’s course in configuration management, also
developed by Mrs. Hass, is accredited by the iNTCCM.

Mrs. Hass is certified ISO 15504 lead assessor, and she has performed
more than 40 assessments in Denmark, Canada, and Poland for companies
of all sizes and in many different branches.

Mrs. Hass is the secretary of the Danish Special Interest Group for Soft-
ware Test and Test Management and has been running this group successfully
since 1997.

Mrs. Hass is a frequent speaker at national and international conferences
and has solid experience in teaching at many levels. She has been the
Danish country coordinator for the EuroSTAR conference for five years and
was on the program committee for the 2003 conference. Mrs. Hass was also
on the program committee for EuroQUEST 2007 and will be in the committee
for EuroQUEST 2008 as well.

Mrs. Hass is the author of the books Configuration Management Principles
and Practice (Addison-Wesley, 2003) and Requirements Development and Manage-
ment, DF-17 2002.

411

Book_samlet.indb 411 2/19/08 8:17:31 PM

In addition, Mrs. Hass has developed the team game ”Process Contest,”
which provides a fun way to learn development concepts and terms.

She is also creator of the posters “... at a Glance—or two” now covering
“Software Testing,” and “Configuration Management,” and soon to cover also
“Requirements Handling,” “Process Improvement,” and “Project Management.”

About the Author412

Book_samlet.indb 412 2/19/08 8:17:31 PM

Index

A
Acceptance testing, 15–16

alpha test, 16
beta test, 16
contract test, 16
defined, 15
goal, 15
planning, 41
techniques, 15

Accessibility, 251–52
Accuracy testing, 246–47
Action, incident, 317–18
Adaptability testing, 272–73
Agile development models, 7
Allpairs algorithm, 190
Alpha tests, 16
Analogies, 110
Analyzability testing, 269
Anomalies

classification, 324–25
defined, 311
See also Incidents

API testing tools, 388
Attacks, 221–22

defined, 221
media-based, 222
stored data, 222
user interface, 222

Attractiveness, 251
Audits, 300–301

B
Basic blocks, 199
BCS working group, 255
Best guess, 109
Beta tests, 16
Big-bang integration, 13
BOOTSTRAP, 337
Borders

closed, 161, 162
coverage elements, 163
open, 161

Bottom-up integration, 13
Boundary values, 154–56

defects and, 155
defined, 154
identifying, 154
testing, 155–56
See also Equivalence partitioning and

boundary value analysis
Brainstorming, 134
British Standard (BS), 332
Bug tracking applications, 387–88
Business value, 79–85

decision improvement, 84–85
process improvement, 85
product improvement, 81–84

C
Call graphs, 232–33
Capability Maturity Model. See CMM; CMMI

Cause-effect graphs, 169–73
coverage, 170

413

Cause-effect graphs (continued)
defined, 169
example, 171–72
graphing process, 170–71
hints, 172–73
size problem, 173
template, 170–71
See also Specification-based techniques

Changeability, 270
Change control process, 327–28
Change management, 22
Checklist-based testing, 216–18

CRUD, 217
defined, 217
example, 217–18

Check sheets, 120–21
Chunking, 292
Classification trees, 179–86

coverage, 181
creation, 180–81
example, 182–85, 241
hints, 186
leaves, 181
nodes, 179
rules, 180
test design template, 181–82
uses, 186
See also Specification-based techniques

Closed borders, 161, 162
CMM, 338–39

defined, 338
inadequacy, 339
key process areas (KPAs), 338
levels, 336
TMM and, 346–47

CMMI, 329, 339–40
continuous representation, 339
process areas, 339
representations, 339
staged representation, 339

Code complexity, 227
Code metrics calculation, 227–30
Coding standard compliance, 227
Coexistence testing, 272
Coincidental correctness, 215
Collapsed decision tables, 169
Communication

incidents, 321–22
with project management, 406

team, 405–7
Communications testing tools, 388
Comparable measurements, 31
Comparison tools, 379
Completion criteria, 44–45
Component testing, 9–11

component test plan, 10
execution, 11
goal, 10
risk exposure and, 130
techniques, 10

Conditions
coverage, 203
in decision statements, 202
defined, 199

Condition testing, 202–4
determination, 205
multiple, 204–5

Confidence measurements, 30
Confidentiality, creating, 31
Configuration management, 21–23

approach to, 95–96
change control, 22
defined, 21
identification, 21
interface with, 44
status reporting, 22
storage, 22
tool support, 372–73

Confirmation testing, 70, 95
Contingency planning, 131, 143
Contract acceptance test, 16
Control flow analysis, 223–24
Couplings, 232
Coverage

analysis, 234
cause-effect graphs, 170
checklist-based testing, 216–17
classification trees, 181
completion criteria, 45
condition, 203
decision tables, 167
defined, 47, 151
domain analysis, 163
LCSAJ, 206, 208
measurements, 30
pairwise testing, 187
path, 209
statement testing, 200

414 Index

state transition testing, 174–75
structure-based techniques, 198
use case testing, 193

CRUD checklists, 217
CTPs (Critical Testing Processes), 329, 352–55

assessment, 354
critical processes, 353
defined, 39, 352–53
improving, 355
testing process example, 353–54

D
Dansk Standard (DS), 332
Database testing tools, 386
Data flow

analysis, 224–27
anomalies, 224
design test cases, 226
phases, 224
usage, 225

Data preparation tools, 373–74
Debugging tools, 382–83
Decision/branch testing, 201–2
Decision improvement, 84–85
Decision outcome, 199
Decision tables, 166–69

collapsed, 169
coverage measure, 167
defined, 166
example, 168
templates, 167
uses, 166
See also Specification-based techniques

Defect-based techniques, 211–14
fault injection and mutation, 213–14
taxonomies, 211–13
See also Test case design techniques

Defect Detection Percentage (DDP), 321
Defects

boundary values and, 155
correction, xxix
early detection, 279
identifying, 143
life cycle, 313–19
product risks and, 143

Delphi technique, 110–11
Deployment, test tool, 369
Developers, 136

Development models, 2–7
incremental, 5–7
iterative, 5–7
sequential, 3–5

Disposition, incident, 318–19
Domain analysis, 160–66

coverage, 163
strategy, 163
test design example, 165–66
test design template, 164
See also Specification-based techniques

Domains
borders, 161, 162
defined, 160

Domain-specific standards, 332–33
Dynamic analysis, 233–35

advantages, 233
coverage analysis, 234
defined, 233
memory handling, 233–34
memory leaks, 233–34
performance analysis, 235
pointer handling, 234
tools, 381–82
See also Static analysis

Dynamic testing, 276
Dynamic test levels, 8–16

acceptance testing, 15–16
component testing, 9–11
integration testing, 12–14
system testing, 14–15

E
Easter eggs, 260
Effects, 137–40

analysis, 139–40
defined, 137
failure, 138
indirect losses, 138
scores, 139

Efficiency testing, 265–68
performance, 265–68
resource utilization, 268

Emulation tools, 375–76
End users, perception, 136
Equivalence partitioning and boundary value

analysis, 152–60
boundary value analysis, 154–56

Index 415

Equivalence partitioning and boundary value
(continued)

equivalence partitioning, 153–54, 160
hints, 160
test design examples, 157–59
test design template, 156
See also Specification-based techniques

Error guessing, 215–16, 215–17
Estimation

as predictions, 107
principles, 106–7
test, 106–15

Evolutionary development models, 7
Execution tools, 376–77
Exit criteria, evaluating, 71–74
Experience-based testing techniques, 214–22

attacks, 221–22
checklist-based, 216–18
defined, 215
error guessing, 215–16
exploratory testing, 218–21
See also Test case design techniques

Expert interviews, 134
Experts, 110
Exploratory testing, 218–21

defined, 218
degrees, 219
hints, 220–21
performing, 219–20
requirements, 218
weaknesses, 220–21
See also Experience-based testing techniques

eXtreme Programming model, 7

F
Failures, identifying, 68
Fault injection, 213–14
Fault-seeding/fault-injection tools, 379–80
Functional security testing, 248
Functional testing, 245–48

accuracy, 246–47
interoperability, 247–48
security, 248
suitability, 245–46
tools, 385

Function points, 112–13

G
Gelperin-Hetzel historical model, 343
Graphics, 117

H
Herzberg’s factors, 403–4

I
IEEE 1044, 313, 314, 319

classification scheme, 319
Standard Classification for Software

Anomalies, 324–25
IEEE standards, 332
Incident management, 311–22

approach to, 95
metrics and, 319–21

Incidents
action, 317–18
causes, 312
classification scheme, 319
communicating, 321–22
defined, 311
detection, 311–13
disposition, 318–19
distribution, 321
fields, 319
investigation, 315–17
life cycle, 313–19
measurements, 30
recognition, 314–15
report information, 320
reporting and tracking, 312–13

Independence, in testing, 399–401
Industry-specific standards, 330
Informal reviews, 284–85
Inspection-based process improvement,

299–300
Inspection meeting, 296–98

logging form, 298
moderator, 297
purpose, 296–97

Inspections
activities, 290
entry/exit criteria, 291–92
Fagan, 289
follow-up, 299
leader, 291

416 Index

overview, 293–94
planning, 292–300
preparation, 294–95
purposes, 290
rework after, 299
roles, 290, 293

Inspector roles, 295–96
Installability testing, 271–72
Integration testing, 12–14

big-bang, 13
bottom-line, 13
execution, 13
goals, 11
summary report, 12
techniques, 13
top-down, 12

Intercomponent testing, 210–11
combining with other techniques, 211
defined, 210
use, 210
See also Structure-based techniques

International standards, 331–32
Interoperability testing, 247–48
Interpersonal skills, 392–94
Invalid syntax, testing, 196
ISO 9126 standard, 244, 255, 261
ISO 15504, 340–41

defined, 340
development life cycle focus, 341

ISO standards, 331
ISTQB advanced certification, xix, xxi
ISTQB Certified Tester, xix, xx, xxi
ISTQB Glossary of Terms, xxv
Iterative/incremental models, 5–7

assumptions, 5
characteristics, 6
defined, 5
evolutionary development models, 7
RAD, 6–7
Spiral Model, 7

J
Java testing tools, 385–86

K
Key process areas (KPAs), 338
Keyword-driven automation tools, 377–79

advantages, 378–79

defined, 377
disadvantages, 379
keywords, 378

L
LCSAJ (loop testing), 206–8

coverage, 206, 208
defined, 206
example, 207–8
test case design, 207

Learnability, 250
Level test plan, 97

defined, 86
size, 97
See also Test plans

Lines of code (LOC), 227
Link and HTML testing tools, 386
Load testing, 268
Logging, test execution, 68–69
Logical bombs, 260
Loop testing, 206–8

M
Madsen’s motivation theory, 404–5
Maintainability testing, 268–69

analyzability, 269
changeability, 270
stability, 270
as static testing, 269
testability, 270–71

Management reviews, 288–89
advantages/disadvantages, 289
objective, 288
roles, 288–89
types of, 288

Maslow’s hierarchy of needs, 402–3
Master test plan, 96–97

defined, 86, 96
stakeholders, 96–97
See also Test plans

Maturity testing, 262–63
McCabe’s Cyclomatic Complexity, 228–30
Measurement presentation, 116–24

check sheets, 120–21
graphics and, 117
pie charts, 120

Index 417

Measurement presentation (continued)
risk-based reporting, 121–22
S-curves, 118–19
statistical reporting, 122–24

Measurements
analysis and presentation of, 31
comparable, 31
confidence, 30
coverage, 30
defined, 28
direct, 29
economical, 31
getting, 115
incidents, 30
planning, 31
precise, 31
progress, 29–30
repeatable, 31

Media-based attacks, 222
Metrics

agreed, 31
defined, 28
incident management, 319–21
reporting, 73–74
subjective, 29
test closure, 76
test implementation and execution, 71
test planning and control, 50
test progress, 73–74
test-related, 29–30

Model requirements, 59
Motivation, 401–5

Herzberg’s factors, 403–4
Madsen’s motivation theory, 404–5
Maslow’s hierarchy of needs, 402–3
testers’, 405

Mutation testing, 214

N
National standards, 332

O
Online link and HTML testing services, 386–87
Open borders, 161
Operability, 250–51
Optimized expressions, 205
Oracles, 374–75

advantages/disadvantages, 375
automated, 374
defined, 374

Organizational anchorage, 398–99
Orthogonal arrays, 187–90

as balanced, 187
creating, 188
defined, 187
example, 189–90
size/contents description, 187–88

P
Pair testing, 221
Pairwise testing, 186–91

allpairs algorithm, 190
coverage, 187
defined, 187
higher-order combinations, 190
hints, 191
orthogonal arrays, 187–90
See also Specification-based techniques

Path testing, 209–10
coverage, 209
error guessing, 210

People skills, 389–407
communication, 405–7
individual, 389–94
motivation, 401–5
test team dynamics, 394–97

Percentage distribution, 113–14
Performance analysis, 235
Performance testing, 265–68

defined, 265
drawbacks, 266
load, 266
scalability, 268
stress, 267
tools, 385

Pie charts, 120
Pointer handling, 234
Portability testing, 272–73

adaptability, 272–73
coexistence, 272
defined, 271
installability, 271–72

Precise measurements, 31
Probability analysis, 140–41
Processes, 33–76

418 Index

concept, 34
dependence, 35
generic test, 35–38
improvement models, 39
input to, 35
monitoring, 34–35

Process improvement, 333–56
approaches, 96, 334
basis, 333
CTP, 355
defined, 329
inspection-based, 299–300
organization requirements, 335
principles, 334–37
results, 335–37
testing improvement models, 341–56
TPI, 351–52
urge for, 334
value of, 85

Process maturity models, 337–41
CMM, 338–39
CMMI, 339–40
defined, 337
ISO 15504, 340–41

Process risks, 127
Product improvement, 81–84
Product paradigms, 23–28

safety-critical systems, 25–28
systems of systems, 24–25

Product risks, 129–30
defects, 143
examples, 129
origination, 129
project risks and, 130
See also Risks

Progress monitoring, 115–25
Project management, 20–21
Project managers, 136
Project risks, 128

Q
Quality assurance, 17–20

defined, xxvi
reports, 20
standards, 330
of test specification, 64–65
validation, 18

verification, 18–19
Quality attributes, 243–73

accuracy, 246–47
adaptability, 272–73
analyzability, 269
changeability, 270
coexistence, 272
efficiency, 265–68
functional testing, 245–48
installability, 271–72
interoperability, 247–48
maintainability, 268–71
maturity, 262–63
performance, 265–68
portability, 271–73
random input, 257–58
recoverability, 264–65
reliability, 261–65
replaceability, 273
resource utilization, 268
robustness, 263–64
security, 248
stability, 270
suitability, 245–46
for technical test analysts, 254–73
testability, 270–71
for test analysts, 244–54
testing, 243–73
usability, 249–54

Questionnaires, 254

R
RAD model, 6–7
Random input generation, 257–58
Reading guidelines, this book, xx
Recoverability testing, 264–65
Regression testing, 70–71

amount, 71
approach to, 95
defined, 70
example, 70–71

Reliability testing, 261–65
maturity, 262–63
measurement evaluation, 261
recoverability, 264–65
robustness, 263–64

Repeatable measurements, 31
Replaceability testing, 273

Index 419

Reporting
activities, 72–73
completion, input, 72
documentation, 72
incident, 312–13
metrics, 73–74
risk-based, 121–22
statistical, 122–24
status, 22
See also Test reports

Requirements, 57–59
levels, 57–58
model, 59
statement, 59
styles, 58–59
table, 59
task, 59
types, 58

Requirements management testing tools, 388
Resource utilization testing, 268
Retrospective meeting, 75
Return on investment (ROI), 335
Reviewing. See Static testing
Reviews

informal, 284–85
management, 288–89
technical, 286–87

Risk analysis, 135–42
effect, 137–40
level, 141–42
perceptions and, 135–36
probability, 140–41
repetition, 142
results, 130, 142
scales for, 136–37
template, 135

Risk-based reporting, 121–22
Risk-based testing, 125–30
Risk level, 141–42

calculation, 141
defined, 126
distribution, 142

Risk management, 131–34
activities, 313
brainstorming, 134
contingency planning, 131
defined, 131
expert interviews, 134
identification, 132–33

independent assessments, 134
lessons learned and checklists, 133
testing and, 130
workshops, 133

Risk mitigation, 142–47
process, 143
by testing, 144–45
timing, 145–47

Risks, 125–47
checklists, 133
defined, 126
identifying, 132–33
independent assessments, 134
perception, 135–36
process, 127
product, 129–30
project, 128
template, 135
types of, 127–29
workshops, 133

Robustness testing, 263–64
Rollout, test tool, 369

S
Safety-critical systems, 25–28

software integrity levels (SILs), 27
standards, 26–27
values, 26

Sampling, 292
Scalability testing, 268
Schedules

producing, 49
test plan, 102, 103–4

S-curves, 118–19
illustrated, 119
phases, 118
uses, 118
See also Measurement presentation

Security testing
functional, 248
technical, 258–61

Sequential models, 3–5
assumptions, 3
characteristics, 3
V-model, 4
waterfall, 3–4
W-model, 4–5

Simulation tools, 375–76

420 Index

Skills
individual, 389–94
interpersonal, 392–94
people, 389–407
test roles and, 391–94

Software cycle, testing in, 1–23
Software integrity levels (SILs), 27
Software testing. See Testing
Source testing tools, 385
Specification-based techniques, 152–97

cause-effect graphs, 169–73
classification trees, 179–86
decision tables, 166–69
defined, 152
domain analysis, 160–66
equivalence partitioning and boundary

value analysis, 152–60
focus, 152
pairwise testing, 186–91
state transition testing, 173–79
syntax testing, 193–97
types of, 152
use case testing, 191–93
uses, 152
See also Test case design techniques

SPICE, 329
Spiral Model, 7
Stability testing, 270
Staffing needs, 102
Standard Classification for Software Anomalies

(IEEE 1044-1993), 324–25
Standards, 330–33

defined, 329
domain-specific, 332–33
general, 330–31
IEEE, 332
industry-specific, 330
international, 331–32
ISO, 331
national, 332
quality assurance, 330
sources, 330
testing, 330

State machine, 173–74
Statements

decision, 202–3
defined, 199
execution, 199–200
requirements, 59

Statement testing, 199–201
coverage, 200
defined, 199
example, 200–201
See also Structure-based techniques

State transition testing, 173–79
coverage, 174–75
defined, 173
example, 177–78
hints, 179
templates, 175–76
test conditions, 175
See also Specification-based techniques

Static analysis, 222–33
of architecture, 230–33
audit, 300–301
calculation of code metrics, 227–30
call graphs, 232–33
of code, 223–30
compliance to coding standard, 227
control flow, 223–24
data flow, 224–27
defined, 222
inspection, 289–92
inspection planning, 292–300
maintainability, 269
stakeholders, 230
tools, 380–81
usability, 253
of Web sites, 230–32
See also Dynamic analysis

Static testing, 275–306
author, 282
champion, 304
change agents, 304
checking, 280–81
of code, 283–84
cost/benefit, 278–79
decision maker, 282
defined, 275, 276
general principles, 275–84
generic process, 279–81
history, 275–76
implementation process, 303
implementation roles, 303–4
informal review, 284–85
introduction of, 303–6
leader, 282
in life cycle, 301–2

Index 421

Static testing (continued)
management review, 288–89
objective, 276
objects, 277–78
outcome, 281
piloting, 305
planning, 301
processes, 304–5
psychological aspects, 306
reader, 282
recorder, 282
of requirements specifications, 302
roles in, 281–82
rollout, 305–6
target group, 304
technical review, 286–87
test processes applied to, 279–80
type mixer, 283
types, 284–301
type selection, 282–84
walk-through, 285–86

Statistical reporting, 122–24
defined, 122
norm, 122–23

Status reporting, 22
STEP (Systematic Test and Evaluation Process),

329, 355–56
defined, 355
maintenance testing, 356
steps, 355
use of, 356

Storage, 22
Stored data attacks, 222
Stress testing, 267
Structure-based techniques, 197–211

condition determination testing, 105
decision/branch testing, 201–2
defined, 197
intercomponent testing, 210–11
LCSAJ (loop testing), 206–8
multiple condition testing, 204–5
path testing, 209–10
statement testing, 199–201
test coverage, 198
types of, 198
white-box concepts, 198–99
See also Test case design techniques

Structured testing, 67
Suitability testing, 245–46

SUMI (Software Usability Measurement
Inventory), 254

Supporting processes, 16–23
Surveys, 254
Syntax testing, 193–97

coverage measure and, 194
defined, 194
example, 195–97
hints, 197
mutations, 194
rules, 194
templates, 195
See also Specification-based techniques

Systems of systems, 24–25
complexity, 24
defined, 24
examples, 24, 25
weakest link, 25

System testing, 14–15
execution, 14–15
goal, 14
report, 15
specification, 14
techniques, 14
tools, 15

T
Table requirements, 59
Task requirements, 59
Taxonomies, defect, 211–13
Technical reviews, 286–87

advantages/disadvantages, 287
defined, 286
roles, 287

Technical testing, 254–73
efficiency, 265–68
general, 256–57
maintainability, 268–71
portability, 271–73
random input technique, 257–58
reliability, 261–65
security, 258–61

Technical writing
defined, 23
testing interface, 16–17

Templates
cause-effect graphs, 170–71
classification tree method, 181–82

422 Index

decision table, 167
domain analysis, 164
equivalence partitioning and boundary

value analysis, 156
risk, 135
state transition testing, 175–76
syntax testing, 195

Testability testing, 270–71
Test analysis and design, 50–61

activities, 51–57
design definition, 52–53
documentation, 51
inputs, 50, 51
metrics, 61
output, 51
requirements, 57–59
test cases, 54–57
test conditions, 53–54
traceability, 60–61

Test automation
approach to, 94
complexity, 361

Test basis, 42–43
Test case design techniques, 43, 54–55, 93,

151–237
choosing, 235–37
defect-based, 211–14
dynamic analysis, 233–35
experience-based, 214–22
pitfalls, 151
selection advice, 236–37
specification-based, 152–97
static analysis, 222–33
structure-based, 197–211
subsumes ordering of, 236

Test cases
creation of, 54–57
data flow technique, 226
for decision testing, 201
expected results, 56
high-level, 54, 55
low-level, 55–56
in test procedures, 63

Test closure, 74–76
activities, 74, 75
documentation, 74
inputs, 74
metrics, 76

Test conditions

coverage items and, 53
extraction, 53
identification of, 53–54

Test designs
contents, 52
defining, 52–53
specification identifier, 52
tools, 373

Test environment
as execution prerequisite, 65
problems with, 66
specification, 65–66

Testers
ethics, xxii
job, xxix
perception, 136

Test estimation, 106–15
analogies and experts, 110
best guess, 109
Delphi technique, 110–11
function points, 112–13
percentage distribution, 113–14
principles, 107–8
process, 108–9
techniques, 109–14
test points, 113
three-point, 111–12

Test group, 52
Test implementation and execution, 61–71

activities, 61–71
confirmation testing, 70
documentation, 62
entry criteria, 66–71
environment specification, 65–66
failure identification, 68
inputs, 61, 62
logging, 68–69
metrics, 71
output, 62
procedure organization, 62–65
regression testing, 70–71

Testing
acceptance, 15–16
accuracy, 246–47
adaptability, 272–73
analyzability, 269
basics, xxiii–xxix, 1–31
business value, 79–85
changeability, 270

Index 423

Testing (continued)
checklist-based, 216–18
coexistence, 272
component, 9–11
condition, 202–4
condition determination, 205
confirmation, 70, 95
decision/branch, 201–2
defined, xxv–xxvi
dynamic, 276
efficiency, 265–68
exploratory, 218–21
fitting into organization, 398–401
functional, 245–48
functional security, 248
independence in, 399–401
installability, 271–72
integration, 11, 12–14
intercomponent, 210–11
interoperability, 247–48
load, 268
loop, 206–8
maintainability, 268–71
maturity, 262–63
as multidimensional, xxiv–xxv
multiple condition, 204–5
mutation, 214
necessity of, xxvi–xxix, 2
pair, 221
pairwise, 186–91
path, 209–10
performance, 265–68
processes, 33–76
on products/work products, xxv
purpose of, 80
recoverability, 264–65
regression, 70–71, 95
reliability, 261–65
replaceability, 273
resource utilization, 268
risk and, 125–47
risk management and, 130
robustness, 263–64
scalability, 268
security, 248, 258–61
in software cycle, 1–23
stability, 270
standards, 330
statement, 199–201

state transition, 173–79
static, 275–306
stress, 267
structured, 67
suitability, 245–46
syntax, 193–97
system, 14–15
technical, 254–73
technical security, 258–61
technical writing and, 16–17
terms and definitions, xxiii
testability, 270–71
usability, 249–54
use case, 191–93

Testing improvement models, 341–56
STEP, 355–56
TMM, 329, 342–47
TPI, 347–52

Testing tools, 361–83
acquisition, 362–67
for all testers, 371–73
API, 388
bug tracking applications, 387–88
business case preparation, 363–64
buying, 365–66
categories, 370–83
classification, 370–71
communications, 388
comparison, 379
for configuration management, 372–73
database, 386
data preparation, 373–74
debugging, 382–83
deployment, 369
design, 373
do-it-yourself, 365–66
dynamic analysis, 381–82
emulation, 375–76
environmental requirements, 365
evaluation, 366–67
execution, 376–78
fault-seeding/fault-injection, 379–80
functional, 385
functionality, 364
implementation process, 368
Java testing, 385–86
keyword-driven automation, 377–79
link and HTML, 386
list of, 385–88

424 Index

nonfunctional requirements, 364
online link and HTML, 386–87
open-source, 365–66
oracles, 374–75
performance of competitive trials, 367
performance testing, 382, 385
piloting, 368–69
for programmers, 382–83
project requirements, 365
purpose, 361
requirements, 364–65
requirements management, 388
rollout, 369
selection team, 363
shortlist preparation, 366
simulation, 375–76
source, 385
static analysis, 380–81
strategy, 363
for technical test analysts, 380–82
to test analysts and technical analysts,

373–80
test management, 371
usability, 364
use decision, 362
Web, 380
Web-based bug tracking, 387
Web performance, 387
Web security, 387

Test invalid conditions, 176
Test management, 79–147

business value and, 79–85
control, 124–25
estimation, 106–15
progress monitoring and control, 115–25
risk and, 125–47
tools, 371

Test management documentation, 85–106
elements, 85
higher management, 86–106
level test plan, 85, 97
master test plan, 86, 96–97
overview, 85–86
project level, 96–106
test policy, 86, 86–88
test strategy, 86, 88–96

Test objects, xxvii, 42–43
Test planning and control, 39–50

activities, 40, 41–50

approach definition, 43–44
completion criteria definition, 44–45
documentation, 41
environment outline, 65
inputs, 40–41
metrics, 50
output, 40
purpose, 39–40
scoping test effort, 47–49
starting early, 103–4
test basis, 42–43
test object definition, 42–43
work products definition, 45–47

Test plans
approach, 100
defined, 96
deliverables, 101
environmental needs, 101
features not to be tested, 99–100
features to be tested, 99
introduction, 98–99
item pass/fail criteria, 100
level, 97
master, 86, 96–97
responsibilities, 102
risks and contingencies, 103
schedule, 102
staffing/training needs, 102
suspension/resumption, 100–101
template, 97–103
testing tasks, 101
test items, 99

Test points, 113
Test policy, 86–88

approach to test process improvement, 88
defined, 86
definition of testing, 87
evaluation of testing, 87–88
quality targets, 88
testing process, 87

Test procedures
defined, 62
documentation, 63
example template, 64
organizing, 62–65
See also Test cases

Test process, 35–38
activities, 36
dependencies, 37

Index 425

Test process (continued)
inputs, 36
iterations, 38
outputs, 36
purpose, 35
static, 36
See also Processes

Test progress, 71–73
activities, 72–73
documentation, 72
inputs, 72
metrics, 73–74
output, 72

Test progress monitoring and control, 115–25
data collection, 116
measurement presentation, 116–24

Test reports, 104–6
comprehensiveness assessment, 105
evaluation, 106
identifier, 104–5
summary, 105
summary of activities, 106
summary of results, 205–6
in test progress communication, 116
test team, 395–96
variances, 105
See also Reporting

Test roles
defining, 48–49
skills and, 391–94
test team, 49
types of, 49

Test specification
environment, 65–66
quality assurance of, 64–65
structure, 43, 46

Test strategy, 88–96
approach to configuration management,

95–96
approach to confirmation/regression testing,

95
approach to incident management, 95
approach to test automation, 94
approach to test process improvement, 96
defined, 86, 88
degree of independence, 92–93
environment, 94
extent of reuse, 93–94
identifier, 90

introduction, 90–91
level entry criteria, 92
level exit criteria, 92
measure to be captured, 94–95
risks, 91
standards, 91
test case design techniques, 93
test levels, 91–92

Test teams
aspects, 397
communication, 405–7
dynamics, 394–97
forming, 397
roles, 49, 395–96

Test ware
approach to, 95–96
archiving, 76
delivering, 75

Three-point estimation, 111–12
TMM (Testing Maturity Model), 329, 342–47

assessment model, 346
CMM and, 346–47
defined, 342
development, 343
mature testing process attributes, 344
maturity levels, 344–46
staging, 345
stakeholders using, 342
structure, 342

Tools for technical test analysts, 380–82
dynamic analysis tools, 381–82
performance testing tools, 382
static analysis tools, 380–81
See also Testing tools

Tools for test analysts/technical test analysts,
373–80

comparison tools, 379
emulation tools, 375–76
fault-seeding/fault-injection tools, 379–80
keyword-driven automation tools, 377–79
simulation tools, 375–76
test data preparation tools, 373–74
test design tools, 373
test execution tools, 376–77
test oracles, 374–75
Web tools, 380
See also Testing tools

Top-down integration, 12
Total quality model (TQM), 347

426 Index

TPI (Test Process Improvement Model),
329, 347–52

assessment, 350–51
checkpoints, 352
cornerstones, 348
defined, 39, 347
key areas, 348
levels, 349–50, 358–59
process improvement, 351–52
structure, 347–48

Traceability, 60–61
Training needs, 102

U
Understandability, 250
Usability

accessibility, 251–52
assessment, 252
requirements, establishing, 252–53
static tests, 253
subattributes, 250–51
testing, 253–54
test tool, 364
users concerned with, 249
verification and validation, 253

Use cases
coverage, 193

defined, 191
description, 193
example, 192
structured textual form, 191
testing, 191–93

User interface attacks, 222

V
Validation, 18
Verification, 18–19
V-model, 4

defined, 4
dynamic test levels, 8

W
Walk-throughs, 285–86
WAMMI, 254
Waterfall model, 3–4, 301–2
Web-based bug tracking, 387
Web sites, static analysis of, 230–32
Web tools, 380, 387
White-box concepts, 198–99
W-model, 4–5
Work breakdown structure, 48
Work products, 45–47
Workshops, 133

Index 427

	Contents
	Foreword
	Preface
	Chapter I: A Guide to Advanced Testing
	I.1 Reading Guidelines
	I.2 Certified Tester, Advanced Level
	I.3 Software Testing Basics
	Appendix IA Vignettes

	Chapter 1: Basic Aspects of Software Testing
	1.1 Testing in the Software Life Cycle
	1.2 Product Paradigms
	1.3 Metrics and Measurement

	Chapter 2: Testing Processes
	2.1 Processes in General
	2.2 Test Planning and Control
	2.3 Test Analysis and Design
	2.4 Test Implementation and Execution
	2.5 Evaluating Exit Criteria and Reporting

	Chapter 3: Test Management
	3.1 Business Value of Testing
	3.2 Test Management Documentation
	3.3 Test Estimation
	3.4 Test Progress Monitoring and Control
	3.5 Testing and Risk

	Chapter 4: Test Techniques
	4.1 Specification-Based Techniques
	4.2 Structure-Based Techniques
	4.3 Defect-Based Techniques
	4.4 Experience-Based Testing Techniques
	4.5 Static Analysis
	4.6 Dynamic Analysis
	4.7 Choosing Testing Techniques
	Appendix 4A Classification Tree Example

	Chapter 5: Testing of Software Characteristics
	5.1 Quality Attributes for Test Analysts
	5.2 Quality Attributes for Technical Test Analysts

	Chapter 6: Reviews (Static Testing)
	6.1 General Principles for Static Testing
	6.2 Static Testing Types
	6.3 Static Testing in the Life Cycle
	6.4 Introducing Static Testing
	Appendix 6A Solution to the Flower Drawing

	Chapter 7: Incident Management
	7.1 Incident Detection
	7.2 Incident and Defect Life Cycles
	7.3 Incident Fields
	7.4 Metrics and Incident Management
	7.5 Communicating Incidents
	Appendix 7A Standard Anomaly Classification
	Appendix 7B Change Control Process

	Chapter 8: Standards and Test Improvement Process
	8.1 Standards
	8.2 Test Improvement Process
	Appendix 8A Definition of Levels in the TPI Model

	Chapter 9: Testing Tools and Automation
	9.1 Testing Tool Acquisition
	9.2 Testing Tool Introduction and Deployment
	9.3 Testing Tool Categories
	Appendix 9A List of Testing Tools

	Chapter 10: People Skills
	10.1 Individual Skills
	10.2 Test Team Dynamics
	10.3 Fitting Testing in an Organization
	10.4 Motivation
	10.5 Team Communication

	Selected Bibliography
	About the Author
	Index

